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Introduction

1.1 Background

The era of huge monolithic main-frames is over. Instead, server rooms are
now populated with clusters of machines that serve the workload. No longer a
single system, but instead a group of systems is responsible for a particular task.
Clusters typically have a bigger combined capacity that can easily be expanded
by adding new systems. Having multiple systems being responsible, failure of
an individual system does not stop the system as a whole, but merely leads to a
graceful degradation.

Not surprisingly, there is a trend to deploy for almost every task where a
computer is involved, a cluster setup involving multiple machines. However,
not every task can as easily be deployed on a cluster as others. Typically, inform-
ative web-sites such as those of search engines, can be served off any server that
has a replica of the original server’s contents. Periodical updates to the contents
are easy, as none of the replicas change the data, only a designated “master”
performs updates. These replication clusters are well suited for read-only tasks,
however, as soon as an application generates a heavy, interactive write work-
load, simple replication techniques are no longer sufficient. Consider a data-
base used by a web store to record what each customer ordered. While e.g. the
catalogues and pictures on the web sites themselves may be easily replicated,
actual customer orders cannot since those are typically frequently updated. To
use a cluster for the shopping data, either the replication techniques need to en-
sure that all replicas in the cluster have the same order data at the same time,
or fragmentation has to be used to split the data up over the cluster, where each
system in the cluster is responsible for its own part of the data. These two tech-
niques, in particular for storing and retrieving of data, are deployed in database
technology to benefit from a cluster setup.

Distributed Database Management Systems (DBMSs) cover the area of de-
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ploying databases on a cluster. They store structured data. Replication and
fragmentation are well researched topics and various forms of either copying
or splitting the database contents exist. However, the nature of a DBMS is to
be well in control. Certain properties that equip a distributed DBMS with ro-
bustness, reliability and correctness (referred to as ACID properties) prevent
the individual systems from operating on their own. Instead, they have to serve
the system that coordinates the process of retaining the ACID properties in the
cluster. This PhD thesis explores the setting in which a distributed DBMS seeks
to loosen the ACID properties to the degree where in contrast to traditional
clusters, the distributed DBMS consists of sovereign and autonomous database
systems. The autonomy of the systems allows them to solve problems on their
own, using local information to influence the solution.

In a search for structured access to the data, database technology has been
developed over the years. Not only the data volumes grow, but also the use of
databases for storing that data. Stimulated by freely available database serv-
ers of all kinds, applications are (re-)designed to use databases as their storage
back-ends. For some applications not only the data, but also the state of the
application is stored in a database to benefit from their reliability and persist-
ence, like in Hibernate [39]. Databases are more and more often used, with an
increasing amount of data involved.

In Werner Vogel’s keynote at VLDB’07 [72], database scalability is identified
as an indispensable ingredient required by applications of world wide sizes. The
matter in which a database can be extended to scale to a new level, defines its
usefulness to the application in terms of adapting to its data needs. This process,
where a database grows along with the data requirements of the application, is
coined as incremental scalability. The database evolves over time, requiring a
flexible administration of data whereabouts to support reconfigurations. In the
light of this property, autonomy is an enabler for flexible reconfigurations. No
longer a change in the system needs to be agreed upon by the distributed DBMS,
but just the local system that is involved takes care of the operation, whenever
appropriate.

Such freedom resulting from autonomy needs a strategy to become effective
in a cluster. The generic model proposed in this thesis is aimed at administering
data spread over multiple autonomous systems. The administration includes
generic functions that define how the data is spread. These functions are in-
dependent, and hence their implementation is decided upon by the system in-
volved. With specific implementations of those functions, existing distributed
database systems can be emulated, thereby it demonstrates the model’s generic
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nature. Being a model to define how original, central, data is spread around,
we acknowledge that it need not to be specific to relational databases only.
However, we approach the model from a relational database point of view.

In this thesis we study the distribution of databases with evolutionary be-
haviour as focus. To achieve the flexibility of this evolution process, we re-
search a database system comprising autonomous systems. With this study we
make steps into directions for further research and development of decentral-
ised, evolving and autonomous database systems.

The ability to adapt to the change in data requirements is considered im-
portant and an enabling technology that is necessary to deal with the future.
The abilities to flexibly and sufficiently adapt to data requirements are missing
in many database products today.

1.2 Research Questions

The focus of this thesis is an exploration towards autonomy, decentralisation
and evolution of database systems. The general research question addressed,
stresses the continuous aspect of evolution in a dynamic database:

How to support a continuously evolving database management system
consisting of autonomous sites and a decentralised catalog?

The research question defines decentralisation and autonomy as important dir-
ections of the exploration. To get a better grip on how to answer this question,
we refine the general research question into four more specific questions. The
first question addresses data distribution with the autonomy and derived inde-
pendence of sites that are part of a larger database management system:

1. In what way can we distribute data in a dynamically evolving
system using site local decisions and avoid global site control?

The aforementioned site autonomy has effects on how those sites can be used
by clients. In particular the question on the level of client participation is for-
mulated by the next question:

2. What is the role of application clients in an autonomous, distrib-
uted database management system?

Tightly related to the autonomy dimension is the evolution component. The
next question expresses the focus on the continuity of that evolution and how
to make it an integral part:
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3. How can incremental scalability become a natural component in
an evolving system?

Finally, in a search for how our ideas affect implementations of distributed
database systems, we investigate the effects of our exploration on existing ma-
chinery in the last question:

4. To what extent are existing common techniques to manage a cata-
log sufficient to support autonomy, decentralisation and evolution?

1.3 Approach and Outline

To answer the research questions, we start with the introduction of a model
in Chapter 3 that forms the foundation for all the subsequent chapters of this
thesis. The formal model describes a way to administer the evolution process
of a database. The model itself has emerged in an evolutionary process of
many iterations, with each iteration being a refinement based on new insights
gained during the process. Eventually, a generic, minimal form of the model
was found, which is described in Chapter 3. The assumption of the use of
autonomous local decisions made by the participating systems is embedded in
the model. With this assumption, the model — as heart of this very thesis —
answers the first research question by describing how data distribution can be
done using autonomous participants. The model also answers to a large extent
the third research question, because its design includes continuous refinement,
empowered by the autonomy of sites to locally reconfigure and refine.

The model achieves incremental scalability by operations applied to the
data. These operations can contain an arbitrary function working on the data.
In Chapter 4 we examine these functions, their properties and their effect when
used in the model. The operations applied within the model allow for continu-
ity during the evolution of the database, and hence form the rest of the answer
to the third research question.

The autonomous nature of the model directly affects its application cli-
ents. Chapter 5 describes an autonomous query strategy that matches the
model, thereby answering the second research question. The autonomy used
by the strategy makes it unconventional and yet largely unexplored territory. In
Chapter 6 we explore the effects of the model combined with different variants
of the application client strategy to gain some insight on the viability of both
when put in practice.
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To answer the fourth question, Chapter 7 presents a simulation study, in
the de-facto query language sQL. This study includes a little experimentation
on the overhead of this implementation on some SQL database systems. It is
shown that standard DBMSs are far from being able to support the proposed
model. Therefore in Chapter 8 we describe the last contribution of this thesis,
an architecture that supports the model and strategy that are part of our explor-
ation.

Before we start with previously mentioned chapters, in the next chapter we
first give an overview of work done in the field. It positions this thesis in the
broad area of database research. The overview is followed by the main chapters
of this thesis, which in turn are followed by a conclusion and outlook on future
work. An appendix on developed technology aimed at a realisation of the ideas
presented in this thesis is included for background information purposes.






Overview

2.1 History

It is the nature of humans to organise. Admittedly some more than others,
but deep inside we have a force that makes us form groups, build houses in
orderly streets, define time tables for public transportation, etcetera. A place for
everything and everything in its place. Most of our organisational efforts lead to
more efficiency afterwards. Many streets are clustered around a given theme,
in a city district, of a certain city, in a province, state, country and so on. But
most of all, house numbers in a street are ordered ascending walking away from
the city centre, one side the odd numbers, on the other the even ones.

Perhaps the most obvious example of our organisation drive is the library.
On many shelves, per genre, all books are ordered first on author, then on
title, just to achieve an easy search process afterwards. But, libraries are old
fashioned and books are made of paper — a material that can only be used
once and worst of all, tends to decay over time. No matter how well the library
is organised, going to the library takes time. Walking around to find a book
takes a few precious seconds, and do not forget the browsing through the book
itself. Over the years, driven by another nature, man has found his way into
the digital era. Even though this era is mainly virtual, the organisational drive
has found its way deep inside it. As a world solely created by man, organisation
is the key component it is made out of. Everything is nicely addressable, no
exceptions for which no proper rule is defined, no chaos that eventually does
not appear to be a well organised structure with logical rules. Among other
things, organised storage of data in this organised digital world is nothing more
than a logical thing to do, and hence the digital databases were born.

In the grand scheme of things, databases have a long history, even go-
ing back centuries if one considers the non-digital libraries and records as a
data base. Nowadays’ digital libraries certainly show much resemblance in the
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storage and search process with those non-digital libraries. Starting from the
1960’s, computers became cost effective, and database technologies were de-
veloped. The new databases were used to store administrative data, such as
flight reservations. These were not books, but these records were searched for,
like books. For this a similar structure as found in libraries was necessary, in-
cluding a method to conveniently search for those records. Codd laid the found-
ations of modern databases with a proposal for a relational model [16] around
1970. In this model, the logical organisation of the database is disconnected
from the physical organisation. Data comes in relations that can be considered
to be sets, inheriting set operations. This yielded in relational queries over the
data. The proposal by Codd resulted in two proofs of concept: UCB’s Ingres [66]
and System R [4] from IBM. The latter used a query language SEQUEL, whose
descendant SQL became the de-facto database query language in the mid 1980’s.

2.1.1 Distributed Databases

Soon these databases were extended to run on multiple machines instead of on
a single monolith [33]. The relational model suits fine in this distributed setting
which goes one step further in decoupling the logical organisation of a database
from the physical storage, by hiding the location of the data from the user. As
such, the distributed variant is a drop-in replacement for the single database
system. Three architectures for distributed databases exist [68] with either a
component shared or nothing in common with the other systems. Shared disk
and shared memory systems are architectures where multiple CPUs work with
a single disk or memory subsystem. In the shared memory architecture, all
processors and disks share a common, often relatively large, memory. Com-
munication between processors can hence go through reads and writes in the
shared memory. In the cluster approach of shared disks, each processor has its
own memory, but access to a single large disk. The shared nothing variant has
no hardware components shared. Instead, separate systems send each other
messages through a network between them. Finally a hybrid combination of
these architectures can be formed into a hierarchy.

Network The shared nothing case has become popular, due to its cost effect-
iveness [63]. However, in the early days, this architecture was hindered by
network instability, seriously affecting the process of shipping several mega-
bytes of data per day. Hence, only once the network connections became fast
and reliable, this architecture became feasible and needed. Distributed shared
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nothing databases are scalable systems, consisting of multiple standard com-
puter systems which are more powerful and cheaper than a big mainframe
computer [18]. This trend has been stimulated by the rise of the Internet,
which is mainly built of network-connected shared nothing systems.

Parallelism The distribution, which was originally intended for a shared data
base between geographically spread offices, allows for parallelism [18, 33] as
well. When exploited well, this parallelism can result in considerable perform-
ance improvements. Hence, the query processing on this architecture tries to
exploit this. In the Volcano model [27] the query processing design is modelled
in such a way that it can be easily switched to parallel execution. The “brackets”
of this model are arbitrary operations based on one or more input channels with
as result one output channel. These brackets can be placed on other machines
without changing the execution plan. Since shipping large amounts of data
over the network is inefficient, this should be taken into account when doing
distributed query processing. It is represented by the query shipping versus data
shipping approaches to the data processing problem. Factors which influence
the decision for either shipping the full data to the processor or first doing the
processing where the data is and shipping that result include network charac-
teristics such as speed and latency, the processing power of the involved systems
and whether the system doing the processing has all the other data available to
do the processing [46].

Heterogeneous and Federated Databases For various reasons, companies
and institutions end up with several types of databases, often from different
vendors. These heterogeneous databases are usually incompatible with each
other and need additional measures to still perform joined work [24, 43]. This
is the area of federated and heterogeneous database systems. In those systems,
a mediator delegates full or partial queries to the underlying database systems
via a wrapper that encapsulates the database specific behaviour into a generic
request and response [32]. Because the capabilities of each database are gen-
eralised this way, the possibilities are limited [43].

Data Placement Where the data resides partially defines where it can best be
queried. Static data placement, assumes the data to be positioned as defined
by a database administrator [53]. Data location then depends on what kind of
queries take place from what locations in the system [12]. Tools to examine the
query workload function as input on where to place what data. However, the
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real query workload, is hard to predict, as well as tends to change over time.
Relocation of the data by the administrator is a tedious job, which triggered a
focus towards dynamic data placement approaches [35]. The ideal here is to
keep statistics and automatically move and make copies of data to adapt to the
current workload [53, 11]. Work has been done on replication and caching of
data to dynamically match the workload. Here two types can be distinguished.
First the algorithms that try to reduce the communication costs by placing the
data close to the clients that are likely to use the data e.g. by static prediction
of a workload, and second the algorithms that do load balancing by replicating
popular hot data dynamically [61, 9]. Data moving is an extension to replica-
tion, where a final migration stage abandons the old copy, such that the new
copy on its new location becomes the primary one.

Replication With multiple copies of the original data, updates become less
trivial to apply. Depending on the level in which all replicas need to be con-
sistent with each other, architectures were designed [68]. An approach to keep
consistency throughout all replicas is to force all copies to apply the same up-
date at the same time. This is an expensive method as it requires all replicas
to make the update disallowing any other operations on that data at the same
time. Techniques to only use a majority of the replicas, a quorum [25, 69, 23],
were devised to relax this requirement. A hierarchical architecture typically has
a primary copy, on which all updates are performed. All other replicas receive
the updates from the primary copy. The other copies may be out of date, but
still consistent for what they store. Since updates are only done on the primary
copy, no conflicts can arise. However the system may fail completely when the
primary copy fails, hence techniques to choose a new master copy dynamic-
ally aim to resolve those cases. Other approaches use asynchronous updates to
replay update statements when necessary to defer doing the work until really
necessary.

Economic Clients In a system where clients can choose between multiple
servers to execute their query on, the complexity of computing the right de-
cision becomes too large for a single system to control. Systems relying on
“economic models” eliminate this complexity via bidding for resources in an
auction. Each server offers certain services for a given “price” as a response to
a client’s query. The first proposed distributed database system based on this
economic drive, was Mariposa [65]. In this system, clients assign a budget for
each query. Brokers in the system start auctions to provide the necessary data
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and to perform the required operations on this data. Servers that are willing
can place bids, which the broker will try to optimise in the cheapest possible
way to benefit itself by performing the query using less money than the offered
budget. If a budget is insufficient, a broker refuses to execute the query.

Decentralisation The client-server model assumed till now, causes a concen-
tration on one, or a small number of servers targeted by the clients. To retain
service levels, load balancing schemes and fault tolerance algorithms have been
developed. However, this concentration problem stimulated research on ap-
proaches that try and spread this load over a large number of participants in
the network. The class of systems that were devised in this area are typed Peer-
to-Peer (P2P) systems, where each participant acts both as a client as well as a
server. It trades its own resources for those of others. At the heart of each P2P
system is an indexing structure to find keys in the distributed network of parti-
cipants. Examples are [51, 56, 58, 59, 62] where distributed hash tables (DHTs)
or other distributed hashing schemes are used to efficiently map data items onto
a participant of the system. The expectations of these systems to solve the con-
centration bottleneck has led to research for database technologies applied to
these systems, such as [29, 37, 40]. By the nature of P2P systems, the result-
ing database systems typically deal with efficiently finding data sources which
together are assumed to be the “database”. The data sources need not to be re-
lational, or files, but can also be streams or XML documents. Here also mobile
and ambient settings get in the picture. Typically, the scene of large numbers of
database-empowered sensory systems which learn and exchange information to
reach a common goal are the topic [1]. In mobile environments, information is
shared through multiple data brokers. Data ‘follows’ the mobile device, which
may be offline for lengthy periods [20].

Stream Systems From a batch-like processing system, recent shift has been
towards continuous emission of data via streams. Examples can be seen in
the stock market “tick” data and various logging applications that generate in-
formation about changes or conditions measured by sensors. With the latter
becoming economical attractive, new floods of continuous data needs to be pro-
cessed. While these sensory streams need a fair bit of routing and aggregation
in an energy preserving manner, database systems have been adapted to per-
form those aggregations, or to help execution of formulated queries in an SQL
dialect, such as in TinyDB [49]. Monitoring applications that handle streams,
may get overloaded by a peak of observation data. In such case it is acceptable
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for the monitoring application to drop or join observations, reducing the preci-
sion in favour of remaining a responsive system. Such operations are in general
against the design principles of traditional database systems that try to handle
everything, fully correct and in the same order.

2.2 Related Literature

Autonomy, evolution and decentralisation are well known terms in database
literature. We briefly discuss the known work on each of these topics.

Autonomy In the research area of federated databases, the notion of
autonomous components is rather common [34]. The components that man-
age the data are often willing to share, as long as they retain to be in control.
The autonomy in federated systems stems mainly from the heterogeneity of the
participating components. Because of their intrinsic differences it is hard, if
not impossible, to leverage precise control on their behaviour. But also the so-
ciological aspect of ownership of the database components plays a role in the
setting of federated databases. Even though for instance universities share their
databases with others, they prefer to remain in control of their own.

In [71] three types of autonomy are distinguished: design autonomy (D-
autonomy), communication autonomy (C-autonomy) and execution autonomy
(E-autonomy). Design autonomy refers to the ability of a component in a system
to choose its own design. Types mentioned for D-autonomy are design selec-
tions of the data being managed (universe of discourse), how to represent this
data e.g. using which schema, in what way transaction semantics are defined
for the local constraints and on what hardware or with which software the
database runs. Of course D-autonomy also allows to adopt new approaches on
the aforementioned areas whenever that is considered to be beneficial from the
component’s point of view. This type of autonomy is typically seen in the feder-
ated databases case, and used in e.g. [22]. Communication autonomy focusses
on the ability to decide with who, when and what the component communic-
ates. C-autonomy involves the freedom to decide at any moment whether to
communicate, and if so, to some or all other components. This also includes
the freedom to be selective on requests itself. A component may for example re-
fuse to execute a query for a given host, but accept the same query when issued
from another host. C-autonomy could be a requirement for weakly connected
systems, such as mobile or ambient systems [8] where components are expected
to be connected to the network for undefined periods at undefined times. For
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reliable communication in these systems between multiple C-autonomy based
components, a non-C-autonomy component has to be used as mediator for their
communication. Lastly, execution autonomy deals with the freedom of a com-
ponent to accept or refuse the execution of a request. This is based on the
amount of efforts it takes to execute the request. E-autonomy allows a compon-
ent to refuse to execute queries that exceed for instance a certain time limit.
But also the effect of the request on the system, such as congestion or deadlock
situations, may be reasons for an E-autonomous system to reject a request. E-
autonomy can even result in requirements for other components to be involved
in the execution of a request, if the executing component considers this to be
necessary.

To conclude, an autonomous system in literature is roughly referred to as a
system reluctant to share sensitive or critical information that limits its cooper-
ation with others. A compatible vision of autonomy can be found in e.g. [14]:
“autonomous, that is, they cooperate to only a limited extent, and do not expose
sensitive or critical information to each other”.

Evolution In the context of databases, evolution is focused on the contents
and schema of a database. This is seen as within the local database, and resol-
ution of problems related to either the changes of the schema, or how to make
those changes to the schema or object classes in an object oriented database.
Causes that make evolution of this kind necessary include migration of different
systems into one, changes of rules, changes in applications and their database
requirements and new needs arising from new technologies such as the inter-
net.

Schema evolution typically involves three issues: physical evolution, logical
evolution and continuity during the evolution process. In the physical schema
evolution, typically the tuning parameters of the database are changed to im-
prove its performance. Here, attributes like buffer sizes, storage types and the
number of worker processes are to be tuned to the application needs. Research
in this area has focused on mainly automating the database such that it can tune
itself. As the amount of tuning knobs continues to grow the perfect combination
gets harder to find. Typical example of such self tuning approach is [13] where
indexes on the data are automatically chosen based on a workload, as to find a
good trade-off between storage overhead and gained performance.

Obviously, many tuning operations that are at the heart of the database
system, require it to be taken off-line. During this downtime, the database
cannot serve any requests, hence it is important to minimise this downtime.



14 2.2. RELATED LITERATURE

However, it would be even better if the system was not to be brought down
for the tuning operations. This requires changes to the way database systems
are built, such that from static structures, dynamic structures are made and for
instance indexes can be built while the system remains fully operational, such
as for instance in [54].

On the logical side of schema evolution, problems regarding changes in the
(relational) database schema are dealt with. While views on the data can help
to make a schema available in another form, they are only of limited help as
typically updates to views over tables are difficult and mostly not allowed by
the underlying database. The only option left is to evolve the schema through
complex transformations. Schema evolution tools try to assist on these trans-
formations, such as [6]. This assistance is not trivial in any case, as semantic
meanings in schemas often require the human in the loop.

Decentralisation In literature, decentralisation is an often used term that
comes close to parallelism. Particularly P2P systems refer to decentralisation,
because they aim to avoid a central dependency, whereas parallelism does not
per sé. In [28] a couple of reasons for using decentralised systems are identified.
As noted before at the discussion of autonomy, most organisations want to have
control over their own systems. In the light of a distributed system, this means
a central controlling entity conflicts with the organisational needs. Hence, a de-
centralised solution forms a good match. But also heterogeneous systems that
are joined together, require their own control. The technical benefits of decent-
ralised systems come close to those of parallel systems. The capacity can grow
beyond that of a single system, response times can be improved when the data
is placed nearby and availability increases when the systems are geographically
widespread.

That the aforementioned benefits can be really attractive, has been proven
by the success of P2P systems. Even though their use is mostly for a legally ques-
tionable data transfer, fact remains that the current semantics-free, requests for
objects by identifier (typically a hash) are quite successful, even though this
method is quite limited. P2P systems as such in their current form are quite in-
effective to retrieve for instance only the abstract of a given document. Instead
the entire document is the granularity of the objects. Data relationships, which
are so well understood and supported in database systems, are in particular
lacking in P2P systems [29].
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2.3 Armada

In the previously described setting of database systems, this thesis explores the
path towards evolution, autonomy and decentralisation. Our exploration deals
with distribution of shared nothing systems, interconnected by fast networks,
as common nowadays. Unlike P2P systems, in Armada we take the database
schema and its possible constraints as starting point in our exploration. Distri-
bution and localisation are built on top of the traditional schema approach.

Where the autonomy of a system typically refers to the willingness to share
and reveal data to others, in this thesis we lift autonomy to the level where
individual systems are the initiators for distribution in the cluster. Due to our
schema-centric approach, the systems hosting the data have the required in-
formation to do well controlled data distribution. Due to our approach, they
also have the required autonomy to perform the distribution using that data.
The resulting way of data placement is what we refer to as evolution. In con-
trast to the known evolution that refers to the data local to a single system,
our evolution spans over the entire cluster of participating systems. Hence,
a decentralised administration is implied by the autonomous systems that the
system comprises of. The essence of decentralisation within Armada is in avoid-
ance of hot-spots in the cluster. Autonomy and decentralisation go hand in hand
for this objective.

Our notion of autonomy and evolution are reflected in the first research
question of this thesis. In particular the high level of autonomy is articulated
by means of site local decisions. Our notion of evolution results in the dynamic
growth factor, that addresses the entire cluster, instead of a single system. We
answer this first research question with a model that encompasses our notion
about autonomy and evolution.

With autonomy in place, those who interface with the cluster encounter
changes, in particular the clients issuing queries. Because mediators use cent-
ralised information about the cluster, their approach does not work in the previ-
ously sketched setup of Armada. The DHTs from P2P systems are well suited to
locate objects, but they lack support for the schema based approach chosen. For
the second research question we therefore explore a stepwise query resolution
approach, where clients navigate through the cluster by itself following schema
information.

Evolution in databases is expected to become an automatic self-tuning com-
ponent. However, the growth of a system is not just a matter of making a
performance decision based on a workload. It involves an extension to the sys-
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tem that need not to be limiting for following growth operations. In fact, the
system needs to be able to keep on evolving all the time, to adjust to changing
requirements. This is the area of the third research question.

Summary

Database systems have become an important part of our world. Over the years
they developed to mature centre pieces in all systems that rely on data stor-
age and retrieval. Being corner stones, database systems have to endure and
cope with high workloads and requirements. This lead to the distribution of the
database over multiple systems, a trend that continues to become more popular
as networks improve. Many aspects of distributed databases, such as parallel-
ism, data placement and replication have been researched to unleash its full
potential. Along the way, new visions on the traditional base of data have been
developed as well, such as wide decentralisation and streaming systems.

With Armada, autonomy of a database is pushed to the level where the local
database is the initiator for distribution, based on local conditions. This form of
decentralised distribution results in evolution of the entire cluster, which adapts
to the workload right there where it is necessary, without a central controlling
component.



The Armada Model

3.1 Introduction

The Armada Invencible is the well known Spanish “invincible” fleet of late 16"
century. Full of glory, this grand armed fleet wrote impressive history, and yet
today its reputation is its invincibility. However, these promising words are not
meant to drive up the expectations for the work we present here. In fact, the
invincible Armada faced some bitter moments of reality, when it was defeated
by Dutch and British ships in the battle of Gravelines. Again, we do not intend
to anticipate on any expectations here. Instead, the model that we present in
this chapter is named after a fleet of ships. The name Armada is used because
it is internationally well understood to be such fleet. The discovery of several
parallels between Dutch maritime history and our modern database research
has also contributed to the title of this thesis. The contents of this chapter
is based on the paper “Armada: a Reference Model for an Evolving Database
System” [30].

Autonomy The foundation of Armada, is the power of autonomy. Like in a
fleet, where each ship has its own autonomous captain. However, even though
each captain is independent, efforts are made such that all ships together act
as a group, with the same target. The Armada model defines a way to allow
autonomous sites to work together as a group towards the same target: serving
a distributed database.

Decentralisation Traditional distributed approaches [68] are designed with
a strong emphasis on data availability and maintainability. However, these
approaches mostly rely on vulnerable centralised techniques. Whenever the
central server becomes unavailable (or worse, demonstrates performance prob-
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lems), the system at large may come to a halt. Also, scaling is often limited by
the capacity of the central server, which eventually becomes the bottleneck of
the whole system.

This problem has been recognised and targeted by P2P systems. Many dis-
tributed hash table (DHT) approaches have been proposed [62, 59, 51]. They
form the base for structured overlay networks on top of which P2P database
systems are built, such as [37, 29, 40]. DHTs provide associative key-based
lookups of data, in the form of a single value, row or block of (cached) data
depending on the system’s purpose. To find the data, the corresponding key for
that data has to be somehow known.

In P2P systems, nodes frequently join and leave the network. This prop-
erty inherently stems from the environment they are situated in. File sharing
between millions of (unknown) people on the Internet simply introduces dif-
ferent time zones, unreliable connections and people unwilling to share (any
further). Also, the files available in the network depend on what individual
people like to share with others. These — mostly social — aspects of avail-
ability and location of data are reflected in the general structure of many P2P
systems. They provide an efficient search for data in the network, if it is cur-
rently available. Data that is currently not in the network, does not exist. Only
through stale pointers, data that once existed can be found, but in general P2P
networks aim at quickly removing such stale pointers. Hence, there is no notion
of a data space in these networks that allows determining whether an answer
can exist, or does not exist.

Evolution The schema based approach towards distribution as explored in
the Armada model delivers a solution for both problems. The model starts from
a complete relation and breaks it up into pieces. In this process, it keeps a
lineage-based administration of the actions taken. The data within each piece
is characterised by a decision function about its permissible content. Moreover,
each piece can be recursively broken up further using a refinement relation of
the decision function. The pieces naturally map on the data units used in dis-
tribution, and the functions are the navigational handles through the ensemble
of autonomous nodes.

Armada is a model designed to facilitate the use of both replication and
fragmentation. It supports administration of operations for both retrieval and
evolution of data with a self-tuning flavour: due to the flexibility of the model,
new systems can participate when necessary, old ones can leave, and the actual
number of systems or location of data is hidden from users of the system. The
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Armada administration allows for localisation of data without need for a central
entity that becomes a bottleneck and hot-spot in busy systems.

3.2 Innovations

The Armada model innovates on three key areas, which characterise the capab-
ilities of the model and form the key components towards autonomy, decentral-
isation and evolution.

Function-based Distribution Control Armada uses general functions to de-
scribe the content of a piece. These functions are arbitrary expressions and can
be freely chosen on a piece-by-piece basis. They enable an Armada instance
to adapt easily to the (local) data distribution or workload characteristics, as
part of its autonomy. This is in contrast to DHT systems where a single global
decision function, e.g. a hash function, is used to control data locality. The
Armada model delivers more flexibility by this freedom of choice for functions.

Traditional systems can, in theory, deliver the same flexibility using substan-
tial human efforts, due to the burden imposed by static configurations. The
dynamic aspect of Armada aims at adapting on demand by creating pieces with
carefully crafted functions to cater for the situation at hand.

Incremental Query Evaluation The Armada query evaluation scheme brings
the pieces back into the original relation incrementally, like reconstruction of a
jig-saw puzzle. This means that the data is available in the system as ordinary
relation fragments. The decision functions allow precise localisation on their
logical whereabouts. Even if the piece itself is currently not available in the sys-
tem, its position in the query result sequence can be derived from its function.
This contrasts with DHT systems where this is not known and the only conclu-
sion to be made is that a value that cannot be found is currently not available.
Functions in Armada describe the data space of the relation. If a value being
addressed is not covered by any function, the value cannot possibly exist in any
of the pieces. Like in traditional systems, for a query in Armada, it is a priori
known what pieces should be inspected before the complete answer has been
retrieved. Even if those pieces are temporarily not available. Hence, data that
is currently not available, remains to be known to the system via the function
administration of the Armada model.
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Active Client Participation One can consider traditional centralised ap-
proaches to to fail to distribute the metadata required for localisation over
the system. The other end of the spectrum is where no central server exists,
and instead all individual systems contain the full metadata regarding the data
whereabouts. In both situations, the entire system remains a monolithic cluster
as long as traditional approaches to transactions and query execution are re-
tained.

For a distributed system to benefit from its infrastructure, a more relaxed
transactional setting is required. In such setting for instance locks do not cross
a system boundary, hence excluding distributed locks. Armada assumes, like
other distributed systems, that the system is used in a loosely coupled setting.
Local consistency in the data pieces is required, but global consistency in the
system as a whole is left to the client to solve. However, in this thesis we
do not focus on the implementation of transactions by clients. With partially
distributed metadata and a relaxed transactional setting, the Armada model
enables full decentralised query execution.

This puts an emphasis on the client’s role in the Armada model. In particu-
lar, Armada assumes that a client becomes an active participant. Active implies
that the client plays an important role in steering query resolutions. Instead of
relying on the server to construct a complete query result, the client expects a
server to answer in portions whenever possible. Not only are partial results re-
turned to the client, but also directions on where and how to get the remaining
parts. Here the client is offered some opportunities to influence the execution
of large queries, as well as responsibilities to e.g. maintain global consistency.

3.3 The Armada Model

Classical designs for distributed databases, require a centralised server that
holds all metadata describing the whereabouts of the available data. Due to
the centrality of such server, it can easily become the bottleneck of the entire
system. The central server is accessed to lookup or update metadata for both
operations that query or update the actual data. More importantly the metadata
has to reflect changes in the structure of the system, such as addition or removal
of nodes, or a reorganisation of the data for load balancing purposes. It creates
a bottleneck that limits the overall performance and scalability of such systems.

Bottleneck An obvious solution to this bottleneck problem is full replication
of the metadata over all participating systems. Such designs have to rely on
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the consistency of the replicated metadata, and hence, each structural change
requires a synchronised update on all nodes in the system. However, because
all metadata is available locally, data operations are cheaper, at the expense
of significantly higher prices for structural changes. While the latter are often
infrequent these high costs may be acceptable, but they imply all participating
systems to be available and willing to perform the metadata update, with no
other update running at the same time. These additional constraints prohibit
efficient dynamic changes of the data distribution.

Metadata With the Armada model, we aim at finding a balance between
these two extremes. On the one hand, Armada does not come with a cent-
ralised server, and thus avoids the bottleneck of metadata lookups. On the
other hand, Armada does not require to replicate all metadata on all nodes.
Instead, Armada finds a compromise by replicating metadata partially only, and
being able to cope with incomplete or stale metadata. Obviously, each node
holds its own local metadata, e.g. schema information about the portion of the
database stored, and keeps it up-to-date. In addition, it holds some remote
metadata, such as information from nodes in its vicinity. To limit maintenance
overhead, the idea is to limit remote updates of metadata to those nodes that
exchange data due to structural updates. Thus, remote metadata is not neces-
sarily kept up-to-date at all times. Rather, an Armada-node assumes that its
remote metadata is an approximation or a past snapshot of the situation of a
remote node.

Armada The inspiration for our novel reference model comes from the Ar-
mada analogy. An Armada is a fleet of ships, that forms a unity although each
ship has a captain who is sovereign. The Armada model reflects this property
in a minimal set of relations between the captains of the ships. Each ship has
cargo (data) stored in barrels (boxes) that are addressed by cargo documents
(trails) kept by the captain. A captain can repackage the cargo on his ship,
and/or hand over (parts of) his cargo to one or more other ships in the Ar-
mada (cloning, chunking). Repackaging may also occur if barrels are empty or
only partially used, such that multiple barrels are put in one (combining). The
cargo documents describe the content of each barrel as well as the lineage of
the respective cargo. A captain keeps one cargo document for each barrel he
has aboard his ship. When handing over cargo to other ships, the respective
cargo documents are duplicated; the original copy stays with the captain on the
old ship and the other one is attached to the barrel on the new ship. Thus,
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not only does each captain know what cargo his ship currently carries, but also
where he sent the cargo that he once had aboard, and where any cargo he ever
transported came from. In fact, the cargo documents kept on each ship provide
sufficient information to allow the captain to locate any cargo item in the whole
Armada .

When barrels are transferred to other ships, the captain administrates to
who the barrels were transferred in the now obsolete cargo documents. To be
able to track down a barrel, copies of the old cargo documents are attached to
the cargo documents of the new barrels, and vice-versa. We use the analogy of
a real Armada in our world of database servers (ships) and apply some of their
properties to them.

3.3.1 Notation, Terms and Definitions

We informally introduce the term (data) box to refer to the portion of the data
that is hosted at a site. We assume that the content of a box can be described
by an arbitrary function g. The actual specification of such function is left to
the instantiation of a specific Armada system. In the course of this section, we
provide some constraints for such functions. Chapter 4 discusses these functions
in more detail and give some simple examples.

Further, we use the term structural operations to refer to operations that cre-
ate and modify the data distribution across sites, i.e., operations that replicate,
(re-)fragment or merge portions of the data. Data boxes form the entities that
these structural operations operate on.

DEF. 1 Be B, B;,4,...,B;,, existing boxes in an Armada system with functions
81/ 8ii1s+ 18ty describing the content of each box. A structural operation o
operates on one or more boxes Bj,Bj {,..., B, and produces one or more new
boxes Bj,Bjt1,--+, Bjtm with functions Sjr8j+1s++r8jtm describing the content
of these new boxes. A structural operation cannot generate new data, but must

not “loose” any data, either. Hence, we require that
§iUg U - Ugjrm =giUg U -Ugi,

Inspired by the cargo documents of the Armada analogy, we introduce lin-
eage steps and lineage trails to store and administer metadata. A lineage step

IThe trail administration for each box is only valid at the time it is created. Afterwards, its
references to successors may be outdated. For the site hosting the box this does mean, however,
that it can reach the rest of the Armada through the sites it knows as stored in the trails, even
though that might not be the most up-to-date state.



CHAPTER 3. THE ARMADA MODEL 23

captures the logistic information of applying a structural operation to a box:

g, the function that is applied (and hence describes the content of the
new box),

S, the site that the new box is shipped to, and

B, the identifier of the new box (for the convenience of later reference).

DEF. 2 A lineage steps = [g, S |:B is a composition that identifies the applic-
ation of a structural operation, resulting in a new box B on site S with function g
describing the content of the new box. The box B’ that s is applied to is identified
by the lineage trail T’ that s is appended to (see below).

Each box in the Armada is uniquely identified by a lineage trail that captures
the whole history of its data.

DEF. 3 A lineage trail, or trail for short, T = s1.55.- - .s5; is a sequence of | € IN
lineage steps. With s; = [g, S |:B, T identifies box B on site S.

DEF. 4 Be B”, B’, and B boxes on sites S”, S', S with their content described by
functions §”, ¢', g, respectively. Further be B”, B, and B identified by the trails
T, T =T'[g,5]:B and T=T'.[g,S |:B, respectively. We call

T a predecessor trail of box B/,
s' = [¢',S']:B" the local step of box B/,

T =T"s a local trail of box B/,

s = [g,S]:B asuccessor step of box B/,

and analogously for boxes B"” and B.

The metadata maintained and stored for each box consists of a set of prede-
cessor trails, exactly one local step, and a (possibly empty) set of successor steps.
The predecessor trails represent the box’ heritage. The local step describes the
box itself, and the successor steps point to the box’ offspring. The predecessor
trails and local step are set upon creation of a box, while the successor steps are
only set once a box participates in a structural operation.

We assume that a structural operation (logically) removes all the data from
its input boxes (transferring it to the newly created boxes), and destroys the
input boxes. Only the respective metadata (lineage) is kept. This assumption
relieves us from the need to consider different versions of each box, and thus
helps to simplify the model. The assumption does not limit the generality of
the model. In a practical implementation, this does not necessarily require
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a (physical) copy of all data with each structural operation. Instead, simply
renaming the box can be sufficient.

To simplify the presentation, we omit the set notation whenever a set of
trails is empty or contains only one trail. In the first case, we simply omit
the empty trails set; in the latter case, we depict the only element as singleton.
Thus, the metadata for boxes B”, B’ and B of Definition 4 is depicted as follows:

pre | loc | suc
T// — T/// . [g//’ S//}:B/’; [g/, S/]:B/
"= T1T".[¢,S]:B"; [¢g,S]B
T= T .[g,S]B;

The set of successor steps is empty for all boxes to which no structural operation
has been applied yet, i.e., all boxes that physically exist and store data. The set
of predecessor trails is empty for one box in an Armada, the origin.

DEF. 5 An Armada instance is born as a single initial box B,. We call B, the origin
of the Armada instance. Obviously, the origin has no predecessor trails. Further,
since no structural operation is applied to create the origin, there is no function
that describes (restricts) B,’s content. We indicate this by % in the local step of B,:

T, = [%, So):Bo.

3.3.2 Structural Operations

To let an Armada evolve from the origin, we consider the following three struc-
tural operations.

Replication: the clone operation

DEF. 6 The clone operation operates on one box B’ with function g’ and generates
one or more new boxes Bj, ..., Bj,, that all contain a copy of B"’s data. Hence,
their functions rj, ..., 7jy, are all identical to g

Replicating a data box is the action of copying its content to a new location.
We call it the clone operation, denoted by function r. Consider the following
example of cloning the origin box B,:

o r,S51):B
T, = [%, $1]:Bo ; HT ’SH:B;
T1 = [o/o, Sl]:Bo. [T ’ Sl]:Bl;
T2 = [0/0, Sl]ZBo . [1’ , Sz]:Bz,‘
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In this example, the origin has two successors, B; and B,, which themselves
have no successors.

From the origin meta-data we can now observe two trails by reading from
left to right: each of the successor steps, followed by the local step and the
predecessor trail. The full local trail for the two new boxes (successors of B,) is
also visible.

Following Definition 6 the number of new boxes produced can also be a
single one. Strictly, this is no cloning operation any more: since the original box
is (logically) destroyed after the cloning, its data is not replicated, but rather
moved to a single new location. However, there is no reason to prohibit this in
the model.

Although we use different site identifiers for the two new boxes in the above
example, it is perfectly sound with the model to produce two (or more) clones
of a box on the same site. The question, whether this is reasonable in practice,
is not relevant in the context of a reference model.

Fragmentation: the chunk operation

DEF. 7 The chunk? operation operates on one box B’ with function g’ and
generates one or more new boxes Bj,...,Bj,,, that all contain a fraction of B"’s
data. We require that all fractions are disjunct, but no data is lost, i.e., the
following must hold for new boxes’ functions:

fiu-Ufpm=¢  and Ve ivmpiz 2 i fi=@

Fragmenting data means it gets spread out over multiple boxes. We call this
the chunk operation, denoted by functions f, f’, f”,.... Consider the following
example of chunking the origin box B,:

To= [%, $1):By ; Hf’sl]‘Bl

f!, S2]:B2
Tl [(70, Sl]ZBo. [f,Sl]:Bl;
Tz [0/0, Sl]:BO . [f/, Sz]:Bz,’

The origin has been chunked into two parts, using chunk functions f and f'.
Like with cloning, in case there is only one result box, a move operation is
effectively being executed.

2We felt free to ‘invent’ this verb.
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Merging: the combine operation

DEF. 8 The combine operation operates on one or more boxes B}, B, ,,...,Bj,,
with functions gj,&i.1,---,8i,, and produces a single new box B that combines

all the data of the input boxes. The produced box’ function m spans the domain of
8iU&i U Ugipy

While cloning and chunking are growing operators, the combine operation
is a shrink operation. Applying it to a number of boxes merges them into one.
However, this operation is not restricted to acting as an inverse-operation to
the clone and chunk operations, i.e., re-constructing a previously cloned or
chunked box. Our model allows to apply the combine operation to an arbit-
rary set of boxes. This is depicted in the following example, where a clone (By)
and a chunk (Bg) are combined into a new box (By), creating a duplicate free
combination of the inputs’ data.

A note on the notation is necessary: for convenience, clarity and space reas-
ons we do not write down the predecessor trails. From now on, we use a
reference to them in the form of T, where possible instead.

T4 = T3 . [7’ ,51]2B4; [m, Sﬂ:Bg
TG = Tz . [f”, 52]236; [m, Sﬂ:Bg

T,
Tg = Ti} . [m, 51]239;

Again, if there is just one box merged, the result is a semantic move of data.

3.3.3 Lossless Principle

The clone, chunk, and combine functions permit an arbitrary Armada constel-
lation to be constructed. It would even allow for destructive functions, i.e.,
creating rubbish.

An important class are the lossless constellations. That is, at any point in
time it remains possible to combine the boxes on a single site with infinite
resources without loss of any box content.

This property is fulfilled for clone operations by definition. For the chunk
operations it limits their definition. It precludes aggregations and general
(schema-based) data transformations.
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3.3.4 An Armada Database

In practice, databases based on the Armada model evolve over time quickly.
For many reasons, e.g., resource limits, boxes are the target of chunk and clone
operations. An illustrative example of a database with 5 boxes is shown below.

T, = [%swm;ﬂﬁﬁig
T - Ty (A i { [ SR
T, = T, . [ f1, S2]:Ba;
T3 = Ty . [ f2, S1]:Bs;
Ty = Ty . [ f3, S3):Bs;
0[0... )
[0/0, Sl]:Bo [ oo)

BEEEEN % S1:B,

[
(a) the origin overflows when inserting 1 / \
) ~[0.

0[0. .. ) n(5...00 ..5]
/o, Sl] Bo fl’ Sl B] [fl/ S2]:B2
// \\ // \\ EEREN
n(5...00) ...5) b (5. ...00)
[ f1 51]3317 [flz SJ:B> [ f2 51]-33 [fz/ S3:By
rpdegzedny [ofsa] [ ] [ofeu] [ ] (g7 |
(b) box By overflows when inserting 11 (¢) the final state of the Armada

Figure 3.1: Sample Armada with 5 boxes.

In this example, we only use fragmentation functions to spread the data in
the Armada over 5 boxes. Each box is hosted on a separate site for ease of
presentation. The origin box B, was first chunked into boxes By and B,. The
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first of these two children, B; is chunked again, resulting in boxes B and Bj.
The evolutionary steps are graphically shown in Figure 3.1 using symbols which
indicate the coverage of the functions applied in the operations on the boxes.
The symbol ‘[0’ is used to represent the data at the origin of the Armada, in box
B,. The other symbols; * N7, ‘N7, ‘b " and ‘ . ’ represent pieces of the origin
box. Note that the symbols equally divide the original square symbol. This is of
course only a drawing issue, which is not necessarily true for the fragmentation
functions being used.

For this example, we describe how the tree from Figure 3.1 is built over
time by inserting data into the Armada. In the initial situation, depicted in
Figure 3.1a, only B, exists on site S;. For the sake of the example, the boxes
store simple integer values. Each box has a fixed capacity of 5 of such integers.
Normally this capacity is determined by the site that hosts the boxes and the
size of the data items, but for the sake of clarity we use these fixed sizes. The
data to be inserted in the Armada, in order, is for the example:

D ={2,5,7,12,23, 1,72,24,11,16}

Since there only fit five integers in each box, the origin B, consists of D(B,) =
{2,5,7,12,23} when the next integer, 1, is attempted to be inserted. Since it
does not fit, a chunk operation is performed. In our example, we split equally,
which results in D(By) = {2,5,1} and D(B;) = {7,12,23}. The fragmentation
function f; used here selects the range [0...5]. The function f] selects the
complement of fi: (5...00). Beware, this decision is taken at site S; in ‘full
autonomy’, it is not inherent to the algorithm.

In Figure 3.1b, the state of the Armada after the first chunk operation is
depicted. As can be seen, the data from the origin box B, has been moved to
boxes By and B,. Note that the order of the items in the example is maintained,
but this is not a restriction of the Armada model. The only restriction on the
boxes is that each box only holds data that matches its respective local trail
description.

Continuing the insertion of values, now the right box has to be searched.
Inserting the values 72 and 24 ends up in box B;. The origin box B, is not
active any more, and redirects if being consulted. Since it knows the functions
of its successors, it can easily tell that both values fit in the (5...c0) range of
By 3. Also the next integer, 11, fits in B;’s range, but since the box is full, a
chunk operation has to be performed again. The result of this chunk operation
is depicted in Figure 3.1c. Again the data values have been equally split over

3A more detailed description of how this redirection is decided upon is given in Section 3.3.5.
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the two new boxes B3 and By. The last integer to insert, 16, ends up in box By
guided by the ranges associated with the active boxes B,, B3 and By.

From the example it can be easily seen that the different functions r, f and m
end up in the trails for the various boxes. For each box lineage can be seen in the
predecessor trails, which grows every step by extending the lineage information
of the box being operated on.

3.3.5 Localisation

A client can query the Armada by sending its query to one of the Armada’s sites
(51, Sp or S3). Multiple boxes can be hosted on a single site, hence sites have
access to all of the trails that belong to the boxes they host. A query directed
to a site, can then be evaluated by the site to see if it can (partially) handle the
query. Based on the functions present in the trails, data coverage and query
span can be evaluated. As a result of the administration of predecessors and
successors in the meta-data, a hint can be given into the right direction if (parts
of) the query cannot be handled.

Successful and efficient localisation of the box(es) that potentially hold the
requested data is a vital prerequisite to allow query execution on an Armada sys-
tem. Using the previous example, we now briefly sketch that the lineage trails
provide sufficient information to find the responsible box(es) for the requested
data.

Note that when clients contact the Armada, they are contacting one (or
more) of its sites that host boxes, not the boxes themselves. The example from
Figure 3.1c describes 5 boxes that are in fact hosted on 3 sites, Sq, S, and S3.

Point Query Suppose a client ¢ has a query which is answered by . , say
42. ¢ can now contact any of the sites from the Armada. Any site that cannot
handle the request by c, redirects ¢ to the site that it knows has more specific
information. The simplest case is when ¢ connects directly to S3. On S3, only
trail Ty is available. This trail defines the box responsible for the data fragment
(12...00). There are no successors for B, available, meaning Bj is active. Trail
T, tells that the query for . can be answered. In our example this means that
S3 can tell ¢ that there is no 42 in the Armada.

In case ¢ connects to Sq, S1 has three trails at its disposal: T,, T; and T3,
where T3 is the most “specific” trail. Evaluating from that trail, ¢’s query cannot
be answered, hence a redirect to the predecessor box has to be made. (There are
no successors to consider for T3.) Since the predecessor box Tj is on the same
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Figure 3.2: 3 sites in an Armada and what they know of each other.

site, the redirection can be done internally, resulting in no client redirection.
Evaluating T;, ¢’s query can be answered, but since box B; is no longer active,
it must be answered by one of its successors. In this case by successor Ty, which
is located on site S3. Hence, a redirect to ¢ for site S is sent. As obvious from
the previous case, at S, ¢ retrieves the answer to its query.

Finally, ¢ can decide to connect to S;. At Sy, the trail T, is available. This
trail does not cover the query . , so neither would its successors do, if any.
Hence, a redirect to the predecessor box is sent. This box, the origin B,, is
located on S;. Since S; does not (have to) know that ¢ was redirected for box
B, it just evaluates ¢’s query like it did in the case above, with the same result.

Range Query So far we only considered a query which was fully contained in
a single box: the lookup of the value 42. Instead of this point query, a range
query could be issued by c, that possibly spans multiple boxes. Consider query
A which describes a range [10...20]. Like in the previous cases described,
client c ends up at sites S; and S3. Both sites are able to return a partial answer
to the query and an additional redirect in order to get the remainder of the
answer. Here, the client has to deal with the data being spread over two sites.
It must be noted that for this example we chose to have three different
physical sites. This is merely for explanatory purposes. It is very well possible
for every box to be on its own site, or for all boxes to be on the same site. There
are no inherent restrictions in the Armada model as to where boxes are hosted.
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Relations The lineage trails from the Armada model, resemble the relations
between the sites and the function coverages. Every step from the predecessor
and successor trails at a site contains a site and a function. The example Armada
from Figure 3.1c, can be depicted as in Figure 3.2. In the latter figure, only sites
are shown, and their relations to other sites, represented by arrows. Next to the
relations between the sites, Figure 3.2 also depicts (chunk) functions as a range
in a finite space, for ease of understanding. The shaded area at S; represents the
range covered by functions of no longer active boxes, the black area the current
range covered. The outward arrows from S; show the function coverage at the
head of the two arrows. As can be seen from the figure, the black areas in the
ranges of S; and the outward arrows together cover the full range. This is due
to each operation being performed with S; involved. That this is not the case for
S, and S35 can be seen from their arrows back to S1. From the trail available at
Sz, Ty, it is only known what the local function is, f1, and what the predecessor
function is, %. As a result, S, does not know about f{, hence when a request
falls outside of its own function coverage, all it knows is that its predecessor
(the origin) contains “all” data. Of course it never redirects for the data that is
locally covered, as indicated by the striped area in the figure. The same holds
for S, where T, is available. It has two steps in the predecessor trail up to the
origin. Next to the origin itself, like for S, the step from T; contains the function
f1. In a redirect, the site can use both to determine which site comes closest to
what data is requested, which in the example happens to be the same site, but
not necessarily has to be in larger Armadas. In Chapter 6 redirection strategies
based on the functions available are discussed in more detail.

For every site, the whole Armada can be constructed by combining the func-
tions from all outgoing arrows with the local function. This is easily deduced
from the range representation in the figure, since combining all the ranges result
in full coverage of the entire space. This combination is used in query resolving
and composed of the local and remote functions as known from the local, pre-
decessor and successor trails. When a query is executed at a site, it is executed
using this combination. Since each site has its own combination of functions
which represents the same — the whole Armada — actual execution may differ
from site to site, but the final outcome is the same.

3.4 Lineage Wrecks

Eventually, each Armada that has a form of continuous growth becomes large.
In principle, such large tree is no problem, however while data can be moved
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Figure 3.3: The same Armada tree, in (a) represented as lineage tree and in (b)
represented as association tree. (c) represents the association tree
after S; has been removed, (d) after S4 has been removed.
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Figure 3.4: The Lineage Trails for the Armada tree depicted in Figure 3.3a.

to release sites from their data load, the sites themselves cannot be removed.
The lineage trails in the tree in this respect “claim” each site to avoid a gap in
the routing scheme, thereby preventing their removal.

The Armada model defines lineage trails to be immutable, hence simply “up-
dating” their contents is impossible. Instead of reconsidering this immutability,
we simply define additions to the lineage administration, which are in line with
the original model. These additions take the form of an extra trail, which we
refer to as jump trail. Jump trails are trails not pointing to direct predecessors
or successors, but to any other box in the system. By carefully adding such jump
trails, boxes in the lineage can be bypassed, thereby rendering them obsolete.
Note that trails are never removed, hence references to sites remain to exist for
the life-time of the Armada.
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In Figure 3.3a and 3.4 an example Armada is depicted by its lineage tree
and trails respectively. In addition to the lineage tree, an association tree is
shown for the same Armada in Figure 3.3b. The example describes a chunk-
only situation, where S; and S, became empty after they were chunked. This is
in contrast to previous examples where one part of the chunk operation remains
on the original site. Because S; and S4 are empty now, they only send redirects
to their offspring when consulted. In the situation of the example, both sites
have no other function than redirecting, as they store no data.

The sites S; and S4 are due to their limited use good candidates to be re-
moved from the Armada. In fact, a planned removal could be the reason for
chunking to two new sites. While a site cannot be “removed” from the Armada,
it can become unavailable with no intentions to return. While the site remains
to be referenced in the trails of the Armada, the information stored at the site
remains necessary for the Armada as a whole. Hence, a ship that becomes a
wreck — a site that purposely is removed from the Armada — hands over its
lineage information to another site in the Armada. The most obvious candid-
ates for this are the predecessor sites for all hosted boxes. In the example, sites
are not reused, hence there is only one predecessor site for each site, except the
origin.

Predecessor Propagation For site S, to become permanently unavailable, it
has to transfer its unique knowledge to its predecessor. The unique knowledge
is the case of S the successor steps to S¢ and Sy, as specifically can be seen
in Figure 3.3b. Without trails pointing to those sites in the Armada, others
cannot reach them, while S¢ and Sy themselves could still reach the rest through
S1, which they inherited in their predecessor trails. The jump trails to add to
S1 resemble T,. With those specific trails, S; needs not to redirect to S4 any
more, since with the jump trails added it has access to more specific trails that
supersede the original one for S4, as depicted in Figure 3.3d.

Successor Propagation In case of S;, making the site unavailable is not as
simple as described before, since there is no predecessor to hand over the
unique knowledge to. A conceptually simple solution would be to assign the
trails of S; to another node in the system. This node would become the origin,
and the whole system could continue to work as before, using the new origin.
However, even though this sounds trivial and simple, it means all lineage trails
in the entire Armada need to be changed in order to reflect this change, since
each trail contains the full lineage up to the origin. Apart from being a very
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expensive operation, this can only be done by adding extra trails, which in this
case are not more specific. For both reasons, this solution is deemed not to be a
viable solution. It may be evident that it cannot be overcome that lineage trails
point to a no longer existing node, e.g. Sy.

Instead, in this special case, the unique knowledge has to be pushed down
to the direct successors of S;. Again, the idea here is to make S; obsolete by
having more specific information available. Figure 3.3c depicts the situation
where the trails from S; have been pushed down to all successors. If S would
send a redirect to Sy, this redirect points to a wreck. When this is encountered,
a search for surrounding sites using the lineage trails is done, in this case ending
up at S4. The latter site is then able to redirect to the appropriate site to continue
the search.

3.5 Related Research

Close to Armada’s objectives is Mariposa [65]. This system which we briefly
mentioned in Chapter 2 aims next to its economical decisions for a distributed
setting based on fragments of data among autonomous systems. Unlike the
envisaged client interaction in Armada, Mariposa passes queries or data on to
other sites it knows on behalf of the actual client, resulting in a chain of de-
pendent systems representing the economical broker structure. Further on, loc-
ation of fragments is not really specified and forms part of the bidding process,
whereas Armada has this embedded in its lineage trails. The lineage inform-
ation in Mariposa is used mainly for merging back previously split fragments.
Armada on the other hand, allows merging of any two or more boxes. While
Armada does not explicitly deal with data mobility, heterogeneous host capab-
ilities and a simple language that controls actions done on the data, it does not
outlaw their use. In fact, the Mariposa rule system defines action routines that
map on the clone, chunk and combine operations, and the related fragmenta-
tion functions.

Stream Databases In recent years, two research trends in distributed data-
bases have emerged. The first are sensor network databases are characterised
by a large number of resource limited receptors at the edge of a network to
collect mission critical data. Prototypical building blocks are small ‘Motes’, a
single-board-computer (SBC) equipped with limited memory, limited network
capabilities and limited energy, glued together to form a distributed informa-
tion system to feed the upstream applications. On each site, we find one or



CHAPTER 3. THE ARMADA MODEL 35

more sensors and an embedded SQL database engine for storage management
and query processing [48, 21, 5, 2]. However, their underlying architectures
ignore autonomy as we aim for with Armada. In essence, they are built from
functionally scaled-down versions of relational database systems.

P2P Systems Second, Peer-to-Peer (P2P) systems have gained a lot of interest.
A comparison of Armada with such P2P systems is inevitable, since both systems
are decentralised using highly autonomous participating nodes. The focus of
P2P systems is efficient query routing and localisation [56, 52], yielding in a
routing-centric view. Armada differentiates from this approach in having a data
centric view: the data, in terms of boxes, filled with relations are aimed at
evolutionary growth starting from a single node. This different point of view
yields in some elementary differences between Armada and P2P systems. These
differences are all related to the way data is distributed over the system. P2P
techniques assume the data is already in place and numerous, usually in the
form of files. In general the placement is not bound to any rule, and usually
simply on the machine that provides the data on the network. Replication of
that data is a side-effect of other machines that copy the data and make it
available afterwards. P2P systems in general do not make any efforts to manage
the data that is in the system. Instead, they focus on how to find this data in
the network, using a key-based approach, where each data item is assigned a
key used for lookup. Here, efforts are made to have this lookup structure being
fast and resistant to failing nodes.

Unlike P2P systems, Armada has functions that define how data is split over
a number of boxes, which allow for concise localisation of data. With Armada,
the focus is on the data being stored. Using a schema-based approach, instead of
dividing the key-space Armada divides the data-space over multiple machines.
Here, the data is split into parts based on a machine local function, that suits
best for the scenario at hand. Load, capacity or redundancy problems on a
local machine are the trigger within Armada to split the data to another node.
Here it must be stressed that the split function, is local to the machine unlike
in P2P systems which use e.g. a predefined hash-function for the whole system.
The latter of course, only deals with the key-values, not the data itself. As a
result, Armada nodes are able to resolve local overflow situations by taking an
autonomous decision to split their data and move a part to another node. The
index to find the data, hence is not based on some key but the value itself, the
data. Because keys in a DHT system are generated by a hash-function, data
properties are lost in the key representation. This is not a problem for point
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queries which look for a certain (upfront known) key, but it does complicate
efficient range queries, that target the data values. Querying key ranges, which
is not comparable to data value ranges, needs help to simulate range support
such as in the Distributed Segment Tree [74].

A P2P system eventually never searches in the data value space. Instead,
it solely looks at key values. In this regard, Armada is more suitable for tradi-
tional database use, as those databases work with the data values as well. P2P
database systems, such as PIER [37] and PeerDB [55], hence only concatenate
database systems or data sources. They simply lookup the appropriate sources
and apply the queries on those. A fragmentation of a single data source, in a
distributed manner such as in Armada, is not being dealt with. P2P systems
that would assign a key to each data item, e.g. a database tuple, assume that a
query in such system exactly knows what it wants to retrieve — which defeats
purpose of the query.

In more detail, the objectives of PIER [37], a P2P database system, differ
from Armada in what is provided by the convergence — eventual consistency as
also found in epidemic-based systems [70] — of the Armada model. PIER fo-
cuses on massive distribution to validate scalability and distribution. Traditional
ACID properties are relaxed because that is a necessity [26], but unlike PIER,
Armada maintains the global schema requirement for the data. Another P2P
related structure, BATON [38], is a tree shaped P2P overlay network. Whereas
BATON is a balanced binary tree, Armada uses generic (heterogeneous) func-
tions and needs not necessarily to be balanced. In fact, node relocations in the
tree are not supported in Armada, because the tree is built out of the lineage
relation between the nodes, that cannot possibly change in the same way that
history is never rewritten.

SDDS Scalable distributed data structures (SDDS), a predecessor of P2P sys-
tems, use globally known, but locally adaptive partitioning functions [45, 42].
Also the client behaviour in SDDS implementations bears some similarity with
the Armada approach. They manage a cache with metadata to direct data look-
ups. The main difference with the Armada vision is its level of abstraction.
SDDS solutions are focused on single key-based retrieval. In our model, we
extend the scope to the complete functionality of a database system. Further-
more, the lineage trails capture the complete history of a box, something not
considered in an SDDS. It maintains the latest, locally consistent distribution
status.
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Self-management Over their life span, database systems experience a con-
tinuous change (usually growth) of the amount of data stored. Likewise, usage
patterns and workloads keep on changing. For example, more recent data is
often accessed more frequently than older data, creating a “continuously mov-
ing access hotspot”. Classical distributed database architectures hardly provide
any means to adapt to these changes automatically. Evolution techniques are
mainly based on local conditions. Rather, increasing the system’s capacity (by
adding additional nodes) and re-distributing the data to balance the load are
measures that have to be initiated and executed by some human DBA [68]. Ad-
ditionally, client/server settings form the base of dealing with the work, where
servers perform the entire job of query execution as “service” for the client. The
result is a reduced autonomy of servers from an implied work point of view.
Servers have to go through the full execution, instead of only the part they are
responsible for.

The area of self-managing and self-tuning databases limits itself by only ad-
vising the DBA [57, 75] or only dealing with indices and materialised views [3]
— the metadata. Combinations of replication and fragmentation are not sup-
ported, and only on the whole table data, where fragmentation is only ho-
rizontally applied. Armada, on the other hand, can be considered a self-
adaptive model to meet the environment requirements and reconfigure when
they change. A compatible vision can be found in distributed systems, where
decentralisation is the key as well [70].

Summary

The Armada model is a schema based solution to distribution. The control over
distribution parameters is set by functions that divide the data into (smaller)
pieces. The function can be freely chosen by the site that performs the opera-
tion, leading to ultimate autonomy for that site. Not only can it decide when,
but it can also decide how to perform the operation, thereby supporting incre-
mental scalability.

Each function that is applied is recorded in trails that track how pieces of
data in the Armada have evolved. These trails are stored decentralised in such a
way that localisation of the pieces is possible from any site in the Armada. Sites
that are unavailable are not “forgotten”, but instead remain present in the trails,
leading to a consistent image; data does not suddenly appear or disappear, it is
or was known to be missing instead.

To retain the autonomy of the sites in an Armada, sites do not perform work
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for others. Instead they send redirects or refuse to work. This requires an
interaction shift from passive to active, where the client is expecting to follow
redirects and deal with the structure of the Armada to resolve a query.

A big contrast to other systems is that Armada uses a data centric view on
distribution and the arbitrary functions that follow out of that. The high value
for autonomy in the system, to make it self managing, is not to be found in most
other systems. The self management for the cluster as a whole that Armada
aims for, goes beyond the single (sub-)system level and enables a continuously
evolving system.



Automated Operations

4.1 Introduction

The Armada model tracks the evolutionary path of data within a cluster of ma-
chines. Where data is placed is precisely administered through lineage trails.
Important in those trails is the use of functions that specify what part of the en-
tire data is affected by the operation. A large part of the flexibility of Armada is
due to the freedom of choice in what function to use for each operation. A part
of Armada is the autonomy of sites to initiate operations to take place by them-
selves. This yields in the question how the functions can be applied without
human intervention, such that the Armada can evolve itself where necessary.
This kind of evolution where the system adapts itself is a form of self-adaptation
from the self-managing area.

Already back in 1989, Self-Something aware databases were proposed, such
as Cactis [36], a self-adaptive, concurrent implementation of an object-oriented
database management system. The self-adaptiveness of Cactis is in the dynamic
change of the physical organisation and order of update algorithms to reduce
disk access. Many more self-* were to follow, all focused on optimising a local
condition automatically without human help. Nowadays, self-healing refers to
detecting and restarting failed or hung services [17]. SQL Anywhere [10] does
database self-management, which means that the buffer pool size of the DBMS
is increased and decreased based on feedback from the OS and paging faults.
Commercial database management systems take the term self-management as
the ability to avoid a performance nightmare. Instead of seeing spikes in the
performance of the system, a graceful degradation is achieved by e.g. applying
control theory, such as in [67].

Recently virtual machines have gained a lot popularity. They impose differ-
ent behaviour characteristics due to the shared physical hardware. In [15] the
inference caused by the virtual machines in a replica setting is discussed. The
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self-managing nature here is to figure out what queries cause a lot of interfer-
ence and deal with them either via complete relocation on another replica, or
by limiting the resource quotas.

The work done in the self-* area mainly focusses on local tuning operations.
Where other sites are involved, those sites are used to solve a local performance
issue. In an Armada cluster, the self-adapting nature we are after goes beyond
a single system and instead focusses on the entire cluster. What we’re looking
for is more of the self-organising nature of multi-agent (MA) systems [73] in
this respect. MA systems consist of a number of agents that independently try
to work on the same target. Here, a maximisation of the utility of the whole
system is preferred over the utility of an individual agent. In other words, one
may have to suffer for all others, or the system at large to become better. Each
site in an Armada can be seen as an agent, and as such the Armada itself as a MA
system. The sites in an Armada work together on serving the work and storage
loads of a DBMS. Maximising the efficiency of the whole Armada is achieved
by both spreading data for performance, dividing data because of capacity, and
replicating data for redundancy.

The first sections in this chapter deal with the operations available in Ar-
mada and the functions that can be used for them and their characteristics.
The last sections dive into the self-managing aspect of the Armada and how the
functions should be operated in such setting.

4.2 Functions and Operations

Distributed databases come either as replicated or fragmented variants. Propos-
als for combinations of the two are rare and most systems focus on either one
of the two. Since replication is more an effort of coordinating machines, usually
through an hierarchy [60, 19], not much can be said about the data operations
for it. Fragmentation on the other hand is more challenging. Two types of
fragmentation are distinguished, horizontal and vertical fragmentation. They
refer to how the data relations are cut into pieces. In the case of horizontal
fragmentation this means a row-wise cut, resulting in fragments containing full
tuple rows. Taking the union of all horizontal fragments yields in the original
relation. Vertical fragmentation cuts column-wise, with as result separate sets
of columns as fragments. Obviously reconstruction here is done using a join
between the column sets.

At the base of horizontal fragmentation are predicates that describe which
tuples belong to which fragment. Traditional literature considers these predic-
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ates to be a prerequisite for fragmentation [12]. Predicates are simple attribute
conditions, and the process of determining how to fragment is driven by iden-
tified predicates based on application usage. The classical example uses the
geographical location attribute with a condition that separates two regions of
interest. This condition is taken from major application queries, such that the
fragmentation is supportive to the system. The idea behind this is that when a
fragmentation is chosen that results in consulting all fragments for each query,
the fragmentation does not help the system, since networks are slow. This has
improved, and possible gains from parallelism contrast this way of thinking.

When more attribute conditions are identified, a minterm predicate is used
to identify the conjunction of conditions that are relevant. The minterm predic-
ate takes simple predicates either in their normal or negated form, but only in
conjuction. This means no combinations can be made which extend each other
as in the boolean 0R logic. Thus:

y= N\ r

pi€p

with p} being either the normal or negated form of p;. Further the conditions
may not contradict, hence y # false. Resulting are the relevant predicates
considering the identified important application queries.

In vertical fragmentation, columns are grouped in sets, which are like in
the horizontal case identified by important applications’ queries. If an applic-
ation needs attributes from more than one column set that application does
not benefit from the fragmentation as the columns need to be joined again to
reconstruct the original relation, again with slow networks in mind. To aid in
this a tuple identifier like a primary key or row id needs to be present in each
column set. This implicitly adds duplication of data when using vertical frag-
mentation. However, in today’s technological state, the benefits of performing
e.g. selections on columns in parallel can be quite substantial.

Dropping Boxes All sites in an Armada are autonomous in their actions, but
required to abide one simple rule. Data may never get lost by dropping it on pur-
pose. This restriction forbids any site to remove data without actually checking
if it would make that data unavailable. Hence, within this contract, data can be
dropped, if and only if a clone of that data can be found, which can handle the
same queries. This effectively keeps the data available in the Armada. When
a site wants to drop a box, it has to find out if the data it drops can be found
somewhere else in the Armada. The best way of doing so, is to examine the
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local lineage trail. Clone operations in the parent trail indicate a replication of
a superset of the data contained in the local box. Following such clone opera-
tion is necessary to determine if the clone is still available in the runtime state
of the Armada, as it may have been combined with another box again, or simply
be dropped or unavailable as well.

Functions In contrast to chunking functions, cloning functions are defined
to have “overlap”. More specifically, the clone function puts no restriction on
tuples, instead accepts every tuple, regardless which box it is on. Of course this
is only from the “fragmentation”-like point of view. Additional actions need to
be taken to get the behaviour of duplicating the data. The clone function is
the opposite of being pair-wise disjoint: on updates it always also redirects to
its partners in the clone contract. The clone function implementation includes
the knowledge that a full replica of the data is available elsewhere. Due to this
definition the implementation space for clone functions is limited to a single
implementation of cloning behaviour.

Unlike chunk and clone functions, the combine functions are designed to
reduce number of active boxes in the Armada. Where chunking and cloning
facilitate growth, combining facilitates reduction by merging two or more boxes
into one. By definition, this is done in such a way that duplicate data is reduced
to a single copy. The resulting data is the merger of the data that is combined.
The combine function takes the union of two or more other functions, and
filters out duplicates from the data. Since the implementation of this function
is a simple boolean OR relation between the functions it combines, there is just
one implementation, like with the clone function.

Opposite to the clone and combine operations, the functions to use with the
chunk operation are numerous and diverse. All but one of those functions are
horizontal fragmentation functions, simply because only horizontally the actual
data is involved. Vertical fragmentation is based on schema rearrangement
into separate sets of columns. In fully vertically fragmented database systems,
such as MonetDB [7], further vertical fragmentation is impossible given that all
relations are already fragmented to the column level. Hence, we focus primarily
on horizontal fragmentation, when we deal with chunk functions in the rest of
this chapter.
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4.3 Chunk Functions

It is not uncommon for databases to have pieces of the data that are accessed
more often than others. Such frequently accessed pieces of the data are referred
to as the hot sets in the data. The ratio in which the hot sets are accessed more
often than the rest can be very large, resulting in a typical hot spot in the dataset.
This skewed access may simply stress a server and/or make it sluggish to do
queries on data outside the hot spot. In a read-oriented setting cloning the hot
spot would improve the performance. However, in a setting with many writes
splitting up the hot spot over two or more servers has the benefit of not having
to synchronise the two servers, while it still improves the general performance
of the system. This goes under the assumption that both machines are at least
equally fast and network costs are equal. The effectiveness is dependent on the
chunk function chosen to effectuate the split.

When a server simply runs out of (disk) space, further storage of data is
impossible and service degrades. Actions have to be taken to release such server
by chunking a part of its data to another server. While for the problem at hand
(capacity) no performance issues are of relevance, splitting can occur based on
pure space-wise grounds.

4.3.1 Function Types

With capacity and performance as driving forces behind fragmentation in mind,
we identified the following chunk functions.

range function The range type of functions span a consecutive region of val-
ues. It requires that the values can be ordered, such that ranges can be
defined. A unique and dense sequence suits the best with this function, to
have ultimate control over the volume of the ranges. Without this char-
acteristic, ranges can have a hard to predict volume. The function has
obviously no means to control volumes with duplicate values. However,
to a certain extent the range function can deal with duplicates, for as long
as the volume of a range can still be controlled to be small enough to fit.
The idea of the range function can also be extended into n-dimensional
worlds by using cubes or more dimensional “ranges”. A special form of
the range function is the divider function, where the range starts or ends
at the borders of the encompassing scope, thereby just dividing into two
consecutive regions.
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hash function Hash functions take key values and produce new values that
ideally are equally spread over the space of values produced. Typically the
space of produced values is smaller than the possible space of input key
values. Due to this characteristic, hash functions are not reversible: they
are so called “one-way” functions that are meant to project one space into
another. The actual chunk boundaries are defined on the result of the used
hash function in the projected space. As a result, no relations other than
the hash function between the input data and their fragmentation exist.
Advantage of hash functions is that they do not require a sequential order
such as the range function. However, it is hard to tell what the scope of
input values belongs to a chunk. A good hash function does not produce a
skewed result, however, with duplicate values, the result contains at least
the same number of duplicates.

omega function The omega-storage structure is defined to divide based on bit-
level of the attributes involved [41]. Given the bit representation of the
involved values, it tries to find the bit position that distinguishes the values
the most when applying the split. However, because it operates on bit
values, the domain of a key needs to be known upfront, since all values
need to map to an equally sized bit string. Typically, such bit string is
chosen to be as small as possible. In [41] the author does not elaborate on
how non-numeric values, such as strings, should be used with the omega-
storage structure. A possibility for strings would be to use some mapping
from the string value to an integer value that can be turned into a bit
value, such as a simple hash function. Because the division is based on the
bit position, the split always produces two boxes. This could be extended
into 2" resulting boxes by using the n most distinguishing bit positions.

round-robin The round-robin fragmentation function is, unlike the previously
mentioned functions, a function that does not operate based on the ac-
tual data. In the round-robin case, there is typically some external entity
that row wise distributes the data over a number of servers, such as a
load balancer. Because the actual condition on when to send what data
to what server is external (and might even be completely random), there
is no function that describes what data goes where. As a result, the best
one can do with the round-robin function is to administer that there is
more data in the siblings. This comes close the clone function, with the
difference that the full data is not available on every box. Note that round-
robin is only feasible for an append-only environment which is known to
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be unique by some key, for each insertion would otherwise have to be
checked against the other descendants in order to guarantee the disjoint-
ness constraint. This constraint is just explicitly guaranteed to hold in
the append-only case, but the Armada system itself can only get control
over this by paying very high costs defeating the purpose of round-robin.
Without this check, the function is a threat to the Armada strategy. Be-
cause no guided redirection can be made, the risk of a client dangling
between two or more boxes exists.

projection function For completeness, we include the chunk function that
does vertical fragmentation. Unlike the previous functions, the projec-
tion function does not operate on the values. This means fragmentation
performed by this function is not based on the data in the schema at
all. There is no relation to the data, and hence volume control through
this function is difficult. Instead, the projection function fragments the
schema, resulting in a vertical split of the columns in the schema over a
number of boxes.

compound function The compound function is a pseudo function consisting
of multiple functions. By definition of this function, it is only a mere
convenience function that can be simulated by applying all the functions
it contains in order. However, we like to include it here, to discuss the
different possibilities that exist when combining functions. By combining
functions, more complex spaces can be described, for instance multiple
ranges. When the ranges are very small (a tuple) this might also be used
for addressing “per tuple” spaces. Given this granularity possibility, a frag-
mentation based on a regular SELECT A, B, C FROM X WHERE Y SQL query
could also be modeled in a compound function as a combination of the
projection function with some of the other functions, given that the key is
suitable for the selection. As a last note, the round-robin function can not
be combined with any other, as it does no selection on the data, while still
fragmenting horizontally.

Most fragmentation functions have some requirements in order to operate
optimally. The range function can only be applied when there is some know-
ledge on the space it is being applied to. It makes no sense to divide a space
in two if the separation is done in such a way that it does not divide the actual
data, and hence leaves one box empty. It is necessary to have a clear idea on
the “minimum” and “maximum” values in the space and what is between those.
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The hash function is less selective than the range function, but depending on
the hash function itself, its output can be skewed. Having the right function for
the key values is a complicated task, and belongs to the standard hash research
problems. In order to make a good hashing function, it is necessary to know
what the input space is, and whether it is skewed already.

4.3.2 Classifications

The aforementioned implementations of chunk functions can be categorised
according to several classification schemes, based on some properties of the
functions.

An obvious first categorisation is based on the fragmentation being made by
the functions. Here basically two categories are to be distinguished: horizont-
ally and vertically. An extra category for a combination of the previous two is
also included for convenience. The horizontal fragmentation functions are the
round-robin, hash and range functions. They typically make a row-wise frag-
mentation of the data, where tuples are either within the selection or outside of
it. In the category of vertical fragmentation functions, only the projection func-
tion fits. It is the only function that fragments by means of splitting the columns
in the table. Of course a combination between the projection and a horizontal
fragmentation function can easily be made, resulting in both horizontal and
vertical fragmentation. This is covered in the combination category.

Another classification considers how the chunk functions operate. Three
types of chunk functions can be distinguished: functional, predicate based and
simple/compound functions. The functional class uses some algorithm to calcu-
late a new value (apply a function) from the given key value, which is the base
for the decision whether the function covers the key value, or not. The only
function that exhibits this characteristic is the hash function. Predicate based
functions use a certain predicate value to directly decide upon the key value
whether the function covers the key value or not. Functions in this category are
the range and projection functions. While the projection does not deal with the
actual data, it still can be considered a predicate based function if the columns
are considered the key value for that function. The last category of functions
in this classification is for the simple or compound functions. Functions of this
type are either not doing anything at all, or a combination of other functions
from other categories. The compound function is such typical function.

A more abstract classification is based on two axes of the different functions.
The one axis considers whether the function is based on the data in the Armada
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compound

round-robin | projection
omega
hash
range
horizontal vertical

Table 4.1: Schematic representation of Armada function classification.

relation or not. Not depending on the data results in decisions that cannot be
reproduced from within the Armada, as some external decision resulted in the
function. The second axis is made for data dependent functions only. Data
dependent functions can either depend directly or indirectly on the data. Dir-
ect functions apply some condition on the data directly (f(v)), while indirect
functions first apply a (number of) functions before applying some condition
(f(h(v))). This classification is depicted in Table 4.1. The categories are in the
top half of the table, examples in the bottom part.

4.4 Function Trails

A number of functions applied in a sequence is called a chain. In Armada a trail
is a typical chain of functions applied to the data. To determine the possible
contents of a box, it may be necessary to examine the full trail. We refer to
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the possible contents as the “coverage” of a box, or function, i.e. that what it
selects. In practice, the tuples that match the function.

A trail consists of steps, which each have a function associated to them.
This function need not to be a chunking function, also cloning and combining
functions are administered in the steps. Since chaining is about determining
the coverage, the clone function can be left out of consideration in such trail,
since it doesn’t change the coverage in any way. The coverage before and after
the clone operation is the same.

An idea behind Armada is growth over time. This means that trails also grow
over time. New steps get added to previous trails, and so a history of steps is
being retained. As a result, also the functions in the trails are used on top of
each other. In the chain of functions, the functions’ coverage can be based on
the previous one(s), or fully self containing. The first one we refer to as relative
functions, the latter one as absolute functions.

absolute relative

Figure 4.1: A graphical representation of absolute and relative function cover-
age.

Relative Domain Functions When dealing with relative functions, the cov-
erage of the function is based on the coverage of the previous function in the
chain. One could compare relative functions to percentages. Every new func-
tion works on top of the old function coverage as if it were 100%. By this
definition, each new relative function is most of the time more “narrow” than
the previous in the chain, but at maximum equal to it. This avoids redundancy
like might be the case with absolute functions to get the right subset, for in-
stance as a combination of different functions. The functions can be simple as
they do not have to take the coverage of the previously applied functions into
account. The right-hand side of Figure 4.1 depicts this relative coverage, where
the dashed box is based on the outer box it is contained in.
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Absolute Domain Functions The class of absolute functions have a fixed cov-
erage based on the entire value domain, as observed by the origin. This makes
the resulting coverage independent on previous functions, although it might
change the actual coverage depending on them due to occlusion. In the most
extreme case the function before the absolute function in the chain selects a
part of the entire space that is not in the coverage of the absolute function. An
example of a partial overlap of this kind is depicted on the left of Figure 4.1.
Even though the dashed function coverage is within the outer box, it also falls
partially outside of it. The result may be undesirable since the dashed function
may expect values in its entire coverage, while obviously only the overlapping
part receives values. This does, however, indicate the independence of the func-
tion with respect to its environment. In practice, it is most useful for absolute
functions to be contained into the predecessor function, and so be more “nar-
row”, like relative functions.

The advantage of an absolute function is that when functions in front of it
in the chain are removed, its coverage stays the same, even though the received
values need not to stay the same. Also when it is moved to another location,
regardless whether the whole chain (trail) is copied or not, the coverage of the
function remains the same. However, in the Armada model, this is unlikely to
happen.

Function Composition A chain of functions, either relative or absolute, is a
concatenation of multiple functions which need not to be of the same type.
However, chaining arbitrary functions might not be possible or a sensible thing
to do based on previous functions in the chain.

Absolute functions can be combined with relative functions, and vice-versa.
Because absolute functions in principle do not take into account the coverage
of the predecessor function, they run the risk of being ineffective due to non-
coverage, as mentioned previously. Two range functions can easily be posi-
tioned in such a way that there is even no overlap between the two. However,
range functions are an easy example, since they allow to easily see their over-
lap. Hash functions, on the other hand, are much more difficult. Not only is it
harder to visualise their coverage, but also is the way in which any other func-
tion can be applied on top of them more difficult. Due to the characteristics of
the hash function, it is not known what the relation between the tuples selected
by the hash function is. Hence, it is hard to determine what the coverage of the
function is, which makes it in turn hard to apply for instance a range function
to tackle a skew problem.
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4.5 Self-Management

The ultimate self-maintaining Armada system applies the clone, chunk and com-
bine operations automatically upon need. The problem here is not how to apply,
but when. The Armada model specifies how to effectuate an operation, but not
at what conditions (when) using which function.

Cloning Cloning is used to add redundancy to the system. While redundancy
in general is a safeguard for the system not to loose data, it can also serve
as performance win due to load spreading. However, cloning adds the need
to keep all clones synchronised. Therefore, cloning in itself is an operation
that remains expensive after the operation has been applied. In some cases, a
performance problem can be solved using chunking as well. Consider a hot-spot
created by point queries, splitting it up in two distributes the load as well. The
same hot-spot, but created by range queries would not reduce the load in terms
of query hits, but perhaps it does in terms of the amount of data each of the
boxes have to use for answering. Eventually, the entire hot-spot may also be
chunked to a new and faster machine that can handle the load more easily.

While chunking causes much less overhead after the operation has been
applied to maintain the chunk operation, it is preferable for an Armada system
to use chunking over cloning, where the consistency of both clones needs to
be maintained in some way or another for it to be effective. With this insight,
the decision to use cloning unavoidably has to come from outside the system,
e.g. as a (human) preference. Only active boxes are eligible for such operation,
hence the further the Armada is chunked into pieces, the more clone operations
need to be applied to clone the entire Armada system.

Properties A more complex solution would be more geared towards ease of
use relying on the flexibility of the Armada system. Here, the tree based struc-
ture is used to define an inheritance based property system. The properties
define boundaries for the Armada system to operate within. The more proper-
ties defined, the more restricted the systems in the Armada are regarding their
autonomy. Two properties for cloning would suffice to balance the requirements
from outside the system with the autonomy inside the system. These properties
are the minimum and maximum levels of replication that the Armada system
should maintain. The maximum level implies that the system has a freedom
to clone more than the minimum level dictates. This implication means that
the Armada system is able to find situations where cloning has benefits over
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chunking, even considering the burden of the continued maintenance to keep
both clones in sync.

In this complex solution, at any time, on any box in the Armada, the set of
properties can be changed. Such change triggers addition or removal of clones,
to be automatically performed by the Armada system. However, the complex
structure that the lineage tree can become makes this rather difficult to achieve.
First, in a solution like this one, the inactive boxes, such as for instance the ori-
gin, are also valid boxes to control the properties of. This results in for instance
creating a clone of the origin box, representing the entire Armada. Second,
due to the inheritance of the tree, it becomes less obvious what actions are per-
formed if at various levels in the tree properties are changed. For instance, a
box may have inherited the maximum replication level, but its minimum rep-
lication level explicitly set. There are more solutions for what should happen if
the inherited maximum replication level is changed to a value lower than the
minimum replication level. Lastly, it is difficult for an Armada to know that
the properties set on the boxes are satisfied. On the one hand, the sites host-
ing the boxes aim to remain autonomous and not to get involved in contracts
with others. On the other hand, a box that inherits a minimum replication level
needs to know whether it should clone itself, or whether the predecessor has
already taken care of this. Eventually only the active boxes can perform the
clone operation as requested, which means that in an existing tree it can only
be determined how many clones of a sub tree exist, by traversing it down and
building an image of which parts are cloned and how often. Combine opera-
tions in this scheme make it even more complicated since arbitrary boxes may
be combined, and hence it may be impossible to deduce what part of the tree is
still redundant and what part not due to the nature of some chunk functions.

Chunking A self-managing objective that an Armada system can take, is to
fragment automatically when capacity problems occur. This is a natural ob-
jective, as without fragmentation, the system is limited to the size of a single
system. Hence, the target of the objective is to allow the system to grow beyond
the limitations of a single system.

Using pre-allocated small chunks, fragmentation does not apply any more
like before. Since fragmentation is applied in advance to create the small
chunks, a new chunk is allocated on another system when it does not fit on
the original one. Here the slack space profile setting is aligned with the size of
the chunks. A chunk is not assigned if there is not enough free space left. Key
problem with automatic chunking is what function to take to achieve this effect.
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A solution that avoids creating special functions for the problem at hand,
is to chunk the data upfront in small chunks. Many of these chunks fit on the
same system. However, once the system overflows it is obvious what chunk
should be placed somewhere else. With these small chunks it is also easy to
define the “load” for each chunk, to possibly detect a hotspot this way. With
this knowledge, such chunk could be cloned, or chunked such that the box
is essentially moved to another system. The drawback of using many small
chunks is that the Armada itself grows artificially fast because of all the mini
chunks allocated on the same system. This stresses the lineage trails, and their
effectiveness on large scale.

To create less lineage “overhead”, a chunk operation is only performed once
capacity problems demand so. Chunking in this case means that a follow up
has to be found for the current box, such that additions of data can continue.
Without any knowledge of the data inserted in the box, the best way to chunk
that box is by splitting it in two equal pieces. Equal here can be seen as in “data
coverage” or as in the number of tuples the two resulting boxes contain. While
the latter achieves a better distribution of the data over the two new boxes,
the former is easier to implement using a range function, typically by taking
halfway between the minimum and maximum values. By design, some hash
functions are well suited for making an equal distribution of the original box.
However, since the contents of the box differs per case, it is hard to tell if the
chosen hash function also distributes the box contents evenly.

Statistics Assume a range-based scenario, where range functions can be ap-
plied. Ideally, when a box is chunked purely because of performance problems,
the hot-spot in the box is detected. This can be based on statistics kept by the
database kernel of frequently accessed ranges derived through e.g. a simple his-
togram. Depending on the histogram, one or multiple hot-spots may be found,
or no hot-spot at all. Instead a close to even distribution may be found. In
case of a single hot-spot, the chunk function can be designed in such a way
that it splits the hot-spot, or that it extracts the entire hot-spot to relocate it
to another machine. The latter option may be feasible if the Armada system
has reasonable beliefs that the other machine is able to handle requests to that
data more powerfully. This can be e.g. due to other hosted boxes, or physical
hardware configuration matters. When multiple hot-spots are found, each can
be assigned to a separate machine, or perhaps multiple combined into one and
moved together.

In case of an even spreading of load, e.g. when the histogram shows no
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data that is obviously accessed more often, the entire box can be simply seen as
hot-spot and hence split in two even pieces. However, in such case also a hash
function could be beneficial due to a more even distribution. Though, since the
result of a hash function is not a consecutive sub-range of the original space,
it is possibly less effective as a range function if there are many range queries
performed on the data. When a range query fits in one of the sub-ranges of a
range function, it can be executed on a single box, whereas with a hash function
this is not possible. However, once the range selection spans both boxes, there
is no clear benefit, since both boxes need to be consulted, as is the case for a
hash-function.

Storage Capacity When a box runs out of free space, said box needs to be
chunked to resolve a capacity shortage problem. Detecting such shortage usu-
ally is fairly simple given that there is a notion of available “free” space. After
this has been detected, a new box has to be added to extend the system. One
option for that is to chunk the existing box in such a way that all data remains
where it is, while new data ends up in the newly allocated box. This only works
in certain data scenarios. First, the current contents of the box has to be de-
scribed. While minimum and maximum values can be used for that, this may
not be sufficient to achieve a split where new data goes into the new box. Ran-
domly inserted data, for instance, is hard to describe. This highlights the second
required point for this method, which is the need for consequently added data,
as typically found in log-like data that is append only and fairly suitable for
range partitioning.

Many other scenarios are not suitable for range partitioning this way. In-
stead they may have gaps in their keys which can be filled in later. For these
scenarios it is better to free up some space on the original box, such that inser-
tion of data on the original box is still possible. The free space allocated, the
slack space, depends on the chunk function chosen. The amount of slack space
available, influences whether the original box has to be chunked again later on
when it reaches its capacity limits again. The easiest way is to simply split the
entire box in the middle, to effectuate a slack space of 50%. This amount is
the best one can do in a scenario where it is unknown how and when the data
is inserted. If there is some information available on how the data is inserted,
the slack space level can be adjusted to suit, such as shown before with log-like
data insertion. Advanced statistics may record the amount of “appends” versus
“inserts” given a range ordering, as to define an efficient slack space percent-
age. If slack space is allocated and never used, the result is unused space in the
Armada system.
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Summary

An important aspect of the Armada model, is the function as part of an opera-
tion that defines how data is spread. The amount in which this function can be
devised by a site, defines how well such site can operate on its own, and hence
how well incremental scalability within the cluster is effectuated.

Functions are not always independent, the chain of functions of which they
are part in a lineage trail, may put certain restrictions on them. A limited
amount of function types can be identified to be used, with their own prop-
erties, affecting the usefulness of other functions to be applied in a chain.

Thus far, the decision on a certain function is best done based on simple
heuristics, until further research shows better ways. This way it is easiest to
avoid clones in a system, and to apply chunk functions of a range type, based
on histogram information of data usage frequencies.



Execution Model

5.1 Introduction

The Armada objectives explicitly put initiatives outside of the world made of
boxes and sites. On purpose, the user of the Armada system is expected to play
an active role in the process of its own query execution and the overall state of
the Armada itself. The emphasis is put on the capability of resolving problems
by making decisions. This is typically the user, but assisted by a program that
performs the execution of queries, hopping between servers to collect pieces
of the answer and construct the final answer out of those. Additionally, when
clones are in the system, synchronisations between them are the responsibility
of those who add or modify data, for which an application can perform a by the
user chosen strategy.

When the user in charge of all decisions, the system puts a heavy burden
on him or her in terms of interactions, and hence this is not desirable. As
seen in Chapter 4, operations can be automated to a certain degree, thereby
relieving the user from work. Also here, many actions the user should take can
be supported by a program that acts on behalf of the user.

This Chapter presents some techniques that can be applied on top of the
Armada model. It shows by simple solutions that the setting where servers
deny certain responsibilities, is not unusable.

Assisting Users Assume a user tries to insert 10000 tuples into an Armada.
Sites in the Armada can hold at maximum 1000 tuples. Without any help, the
user would start inserting tuples on site Sy, which in this example initially is
empty. After 1000 tuples, Sy reports to be full, and something has to be done
to resolve this. The only option the user now has is to to start looking for a
new site to host more of its data. If the user fails to do so, it is obvious that it
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cannot continue inserting its data. Given that Sy is free and the user found it, it
instructs Sy that it should chunk to site S; using a given function. Sy may refuse
this operation, for instance if it cannot reach S, or when S; is not willing to
cooperate.

Obviously this continues with the user involved all the time for the rest
of the chunk operation and further inserts, resulting in an Armada eventually
causing more headaches than delights. Instead, an agent in the system can help
to alleviate most of the work for the user. Redoing the same example with the
agent as mediator between the user and Armada sites, the agent receives that
Sy is full and starts searching for a new site on behalf of the user. Agents can
use economical models, statistics, first come first serve strategies, etc. to select
a site to chunk to from a pool of existing free sites. If the agent fails to do so, it
can return to the user with the problem at hand. The agent lets site Sy decide
how to chunk to S1, which includes the moving of data from S to Sy, if any.

The agent then continues to insert tuples on Sy. Depending on the chunk
function chosen, Sy can handle those tuples, or not. In any way, it has the means
to redirect the agent to S; when the data does not fit any more. Once the agent
receives such redirect, it continues inserting data on the new site. Eventually,
the cycle repeats itself when S; reports itself to be full. In an ordinary case, the
user need not to be involved in the entire process of chunking the data, when
an agent is in effect. As obvious, most of this work that is the implicit respons-
ibility of the user can be performed by the agent based on some heuristics, and
preferences of the user.

Query Execution After the user’s data has been inserted, the Armada consists
of a number of sites. A user can contact any of those sites and request it to
execute a query. In the trivial case, a user poses a query at site S, which is
local to the site itself. This is the case if for example the user requests a single
key-value. In such case, S, can simply return the answer to the query, and
it resembles regular database query answering. The simple opposite of the
previous scenario is when the user has a query that does not address any of the
responsible boxes of Sy. In this case Sy returns one or more redirects to the user
as an indication where to go. The user uses the redirects to continue its query.
A complexer scenario is when a site is only able to handle a query partially.
In such case the coverage of one or more of its boxes address a part of the
query, but not completely. Suppose the user sends S, a query which it can only
partially handle. S, returns the results for the part it can handle, accompanied
by the sites that the user should try in order to complete the result. The user
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can traverse all redirection sites to try and complete the full result for its query.
It has to keep track itself which sites have been seen, as the sites it contacts
do not know which sites the user already visited. As such they also return sites
previously visited by the user together with the partial results they provide. This
scenario depends very much on the user to keep track of the query process,
without having access to the actual parts the query consists of. In particular,
clones in this scheme may confuse a user that only knows what sites to visit.

An alternative to the previously described approach is again to use the agent
for the execution of a query. Instead of having the user being confronted with a
“query plan” returned by a site its given query, the agent keeps. The query plan
consists of sub queries that have to be executed to finish the query. Because the
sub queries match boxes, the agent simply starts traversing the query executing
the single box queries, and glueing the results together. In some cases this may
result in a large result, or a very lengthy execution time. Since the agent keeps
the administration of the query execution process, it can present its progress to
the user, who can additionally also control further execution in such case.

5.2 Query Resolution

An Armada system contains sites that host boxes. Sites are database powered
entities that perform the local tasks for each box they host. They handle re-
quests either by sending data or by sending a redirect. As noted before, a
mediator between user and site is available in an Armada system, called an
agent.

Humans are still indispensable for the existence of the Armada system.
While many types of users exist, for the system the humans are those that can
physically influence the system. That is, adding new hardware to the system
by means of new sites, or extended capacity. Even though the system could
order new components itself, it physically has to have them installed. But also
in the use of the system are humans those that can resolve conflicts, by just
making a decision which the system itself cannot devise. Input on what parts
of the Armada system to clone reflect a human preference for redundancy. Last
but not least are the data and its queries that originate from human users, but
essentially make up the existence of the Armada system.

Agent Tasks The Armada agent can independently do some work for the hu-
man user. Typically, an agent carries out query execution and follows redirects.
As long as there are no problems carrying out its work it is not necessary to
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bother its user with the work of following the redirects and continuing the query
resolution process. To help even more, the agent tries to construct a full answer
when feasible, thereby hiding the distributed fashion of the Armada system,
and performing the database operations to construct the final answer out of the
parts that it has received. Finally, when the user adds data to the system, the
agent can take care of performing chunking transparently during the insertion
process as long as sites with free space are available.

The agent needs the user in cases where it cannot possibly act itself correctly.
It is up to the user to decide what to do with a query for which one or more
pieces of that data are currently unavailable in the system. For long running
queries, the intermediate results may be of interest to the user. Incremental
query results based on chunk fractions allow a user to abort execution after it
has only partially been processed, while still having a partial answer. Obviously
this is entirely a user-based decision. If there is no free space in the system,
the user needs to come to an action to either stop adding data to it, or to make
space available.

5.3 Consistency

In principle the Armada system does not advocate a master/slave setup towards
clones. By not doing so, the risk of the entire system to rely on a single master is
avoided, as well as that a single update bottleneck is absent. The consequence
is a multi-master setting, where each clone can accept updates, independently
of others. Synchronizing the independent updates can cause conflicts when
the same data is updated at two or more clones, when a uniqueness constraint
breaks because of two independent updates inserting a same key, or when data
is deleted which happened to be deleted on the other clones already.

Keeping the clones synchronised with each other is a tedious job. The pro-
cess of synchronisation can be troubled by a number of situations in the system
as indicated before. First it has to be determined if, and if so, how many clones
there exist and where they are located. In principle this can be solved by looking
for clone operations in the predecessor trail. However, there may be multiple
clone operations, and those encountered may actually be based on outdated lin-
eage trails, and hence cloned again, or even combined thus effectively removed.

Synchronisation Agents need to deal with previously mentioned conflicts and
possible non-directly solvable delays. A danger of pushing the clone synchron-
isation task to the agent, is in the matter in which the agent takes its job seri-
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ously. The system risks synchronisations not being done, just because the agent
neglects to do the job. However, if the Armada system would perform the syn-
chronisations, it runs the risk of having to make decisions on conflict situations,
as well as ending up in dealing with unavailable sites.

To address the risks of the Armada system, it has to be guaranteed that
synchronisations eventually can be made. This means agents need not to do
their job, while there is enough information in the system to cover up for that,
such that other agents can do the synchronisation, if necessary. For this to work,
each clone in the system needs to keep track of its own transactions. That is, it
needs to store a counter that identifies the current state of the data. Next to this
counter, it also needs to be able to produce a delta between two counter values.
This may be implemented e.g. via the transaction log.

d:0,a:2,c:1 e:0,a:2,c:1

Figure 5.1: Multi master synchronisation counters.

Counters Upon creation of each clone, a new counter is initialised. How-
ever, to keep track of the state of all other clones in the system, this counter is
not a simple single value. Consider Figure 5.1 where two clone operations are
depicted. The first clone operation resulted in three clones, the second clone
operation cloned one of the clones into two. Consider the first clone opera-
tion. Each clone here gets its own counter, which is uniquely identified. For
readability purposes, we chose the simple values 4, b and c. A unique identifier
can easily be deduced from the path back to the origin for each clone. The ini-
tial state of the counter is zero, which is appended to the identifier, separated
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by a colon in the figure. If both 2 and ¢ perform a transaction, their counters
are incremented indicating a changed state. The result is an increased revision
number in the counter, thus: a : 1 and ¢ : 1. b remains in its initial state, as it
has not been changed.

Now consider the merging of the transactions among the three clones a, b
and c. When a is merged to ¢, ¢ needs to process the single transaction that
was applied to 4. In the most trivial case, this transaction is not conflicting at
all. Applying the transaction hence is simple and ¢ would be up-to-date with a.
However, even though a transaction does not conflict upon merge, it can yield
in problems after the merge. Assume transaction 4 : 1 consists of p = 5 and that
transaction c : 1 consists of p = 3. Now regardless of at which point in time both
transactions were performed, because a is merged to c, the value of transaction
c : 1 is overwritten, resulting in p = 3. While the decision whether this is correct
or not is up to the user, we are here concerned over the consistency over the
clones once ¢ is merged to a. Because of the transaction c : 1, a needs to be
updated with this transaction. Merging it as before would yield in p = 5 on a4,
since ¢ : 1 contains this. Obviously both clones, while they are fully merged and
synced, are not equal. Needless to say this is an unwanted situation that needs
to be resolved.

Revisiting the merge of a to ¢, once ¢ has applied transaction a : 1, it needs
to consider this as a sub transaction of its own current transaction as indicated
by its revision counter. This makes sure that the blind write p = 5 is applied
in ¢ : 1, causing a consistent image in further merges. Still, the counter is not
updated. While this is unintuitive, it is fact necessary not to do so to avoid an
endless loop of merge operations between in this case a and c. If ¢’s counter
would be incremented, the merge of ¢ : 2 to a would be of no problem, but the
result of that merge would be a : 2, which then again would have to be merged
to ¢, which obviously has no extra information and causes an endless loop.

Merge Administration So far we ignored how clones can determine what
transactions they have merged from the other clones. To do this, each clone
needs to administer which transactions from other clones they received. This
is administered in the counter. Using the previous example where transaction
a : 1is merged to c, the counter at ¢ becomes c : 1,4 : 1, which describes its own
state, and the updates from a it got matching a’s state at that time. With this
notation, it is also easier to accept that ¢’s revision counter is not incremented
by a merge operation. The counter is extended or updated with the revision
number of a at the time of the merge. Using this notation, two clones are in
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sync if their counters are equal. However, this does not necessarily mean they
are up-to-date.

With the extended counter form, merges can very flexibly be propagated
through the system. Consider the initial state for a, b and ¢ again. After trans-
action a : 1 completes, it is merged into ¢. The resulting state of ¢ becomes
¢:0,a:1. Now c is merged to b, this essentially merges over a : 1, but b tracks
it in its counter as a merge from c. Hence b’s counter becomes b : 0,¢ : 0,a : 1.
Transaction a : 2 can similarly be merged either directly to b, since b hasa : 1 in
its counter, or via ¢ again, without disrupting any future merge process.

The second clone operation in the example of Figure 5.1 is performed after
the system has been running for a while. The revision counter of aisa:2,c: 1
at the time of the cloning operation. The latest revision of a is not yet merged
over the entire system. The clone operation produces the clones d and e, which
get their own counters. However, they are copies of the original a, hence they
inherit a’s transaction log. This allows them to bring other clones in the system
up-to-date with the last transactions of 4. Since a ceases to exist after it has
been cloned, no further transactions are applied to it. Still, d and e are part of
the original a. Therefore, both new clones retain the last revision of a in their
own counter, such that other clones can sync up to the last changes of a before
it was cloned. Hence, the new clones start with the counters a : 2,d : 0 and
a:2,e:0. For the system the new clones are equal to the others, and a appears
as a clone that is never updated any more. Since it does not exist any more, it
also does not require to be updated.

Clocks Our described counters strongly resemble vector clocks [50]. These
clocks are an improvement of Lamport’s virtual time concept [44]. Here time
is reduced to the simple notion of “happened before”, which means as much as
for each two events a causal relation exists (2 happened before b) or they are
unrelated, which says nothing about when the events happened in a physical
clock world. The causal relations are caused by messages between processes,
in Armada’s case propagations of updates. In the vector clocks, each process
keeps a vector of counters, for every process in the system a counter in the
vector. Messages between processes transfer the entire clock vector, such that
not only the counter of the sending process is transferred, but also those of that
were once received by the sending process.

It is not hard to see that in our described system of transaction counters,
we also have vectors keeping the counters of the other sites in the Armada.
Essential difference here, however, is that our vector are not of a fixed size, and
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it is not known how large they have to be. In fact they may differ per site. In
practice this does not change much in the vector clocks, since an absent process
could just implicitly mean a O in the vector. The clocks do not require to know
the total amount of processes to determine if some vector describes a time that
“happened before” another vector.

Summary

A user of an Armada system is required to be an active participant in its own
query execution. This is inevitable for an autonomous and distributed system
like Armada, where the high level of autonomy is only retained if clients take
their own responsibilities. For the most basic tasks, a user can rely on an agent
in the Armada system to help. The agent performs trivial tasks like following
redirects and constructing query results. As long as no problems occur, such as
unavailable sites or conflicts, the agent can do its job without asking the user.

With Armada pushing actions involving other sites to the user of the system,
in case of clones in the Armada, the users need to maintain the consistency
of the clones. For several reasons users may end up not doing their duty, and
the agents can fail as well given they cannot resolve problems. A system to
guarantee convergence is applied to all clones in an Armada. It relies on users
performing actual updates, but it keeps the administration on what updates
local on the sites. This system that keeps transaction counters on each clone,
allows to merge updates from any clone to any other at any time, eventually
reaching a globally consistent state.



Performance Analysis

6.1 Introduction

The power of the Armada model to point to the appropriate direction from each
point in the system, yields in a converging search for data. However, instead of
reaching the data directly after a single catalog lookup, multiple steps can be
necessary to reach the data being looked for.

With an Armada system growing, the lineage trails grow along in size. The
effect of such longer trails is the growing probability of needing more steps to
reach the data being looked for. In this chapter we study the process of follow-
ing the redirects from the Armada model. We focus on the costs associated to
the process of following for different Armada systems. Since a traditional non-
distributed system would have direct access to the data in any case, in compar-
ison an Armada system introduces extra work caused by the redirects. As this is
a given, next to identifying its costs, we experiment with different approaches
to minimise their effects. The content of this chapter has been presented as
workshop paper [31].

Throughout this chapter we frequent the terms agent, site and box. While
these terms are defined in previous chapters, their definitions may be blurred
due to various usages. In this chapter when we refer to an agent, we refer to
the entity in the system that interacts with the data nodes (sites) in the Armada
system. A site in there is a data node, capable of storing boxes in the Armada
system. A box is a logical block of data hosted on a site, being either active or
inactive. An active box points to data on the host site, an inactive box points to
one or more other boxes that should be searched instead of that box.
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run PostgreSQL MySQL MonetDB

1 0.131 28.415 | 0.099 22.159 | 0.143 30.824
2 0.135 28.440 | 0.098 22.117 | 0.116 30.998
3 0.147 28.435 | 0.098 22.162 | 0.118 30.364
4 0.129 28.435 | 0.099 22.113 | 0.118 30.192
5 0.130 28.421 | 0.099 22.122 | 0.119 30.182
avg | 0.134 28.421 | 0.099 22.135 | 0.123 30.512

Table 6.1: Wall-clock times in seconds for performing 1000 queries over a single
connection (left) or over separate connections (right).

6.2 Connection Costs

Each connection that is made to a database has some overhead caused by hand-
shakes as part of the initialisation rituals on both the protocol level, as well as
on the TCP stack. Table 6.1 depicts the results from a small experiment conduc-
ted to show that creating a connection to a database is an expensive operation.
In the Table, the wall-clock times for performing 1000 “SELECT 1” queries us-
ing a client tool in seconds are shown for three different Open Source database
systems. For each database, the left column shows the time it took to perform
the thousand trivial queries over a single connection, while the right column
shows the time for the same queries, but each over its own connection using a
new client tool invocation. While the numbers are bound to the used software
versions, the table clearly shows that creating connections is substantially more
expensive than reusing the same connection.

In the experiment we tried to eliminate the overhead of query parsing, pro-
cessing and execution, by taking a very simple “SELECT 1” query. The used op-
erating system is OpenSolaris snv_101a on a AMD Athlon64 3800+ . Performing
1000 executions of a very simple application (echo), to try and determine the
operating system costs of executing the client utility averages to 7.3 seconds.
This time is not subtracted from the right columns in Table 6.1. We used the
64-bits versions of the database software, PostgreSQL 8.2.7, MySQL 5.1.21 _beta
and MonetDB Nov2008. Subtracting the operating system overhead from the
1000 connections measurements, the latter still are 158, 150 and 189 times
slower for PostgreSQL, MySQL and MonetDB respectively. For this reason it
seems beneficial to try and reduce the number of connections an agent has to
make during the query process, since this takes a substantial amount of time.
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6.3 Metrics

Each measurement needs a way to describe the observed facts. Those descrip-
tions are expressed using a given metric. Within our experiments on the Armada
model, we are primarily interested in the performance of agents that navigate
through the system. This performance depends on several factors, which we try
to address given the following metrics.

hopcount The number of steps taken by the agent for a query from the starting
site to the site holding the active box with the value being looked for. An
agent that directly contacts a site which contains an active box responsible
for the data value it looks for, has hopcount = 0 for that particular query.
The bigger avg(hopcount) becomes, the worse the seek performance of
the Armada.

sitehits The number of hops to a site by the agent. When an agent makes a hop
to a site it also performs an action on it. sitehits expresses the importance
of a site by means of how many times it is hit. A query with hopcount =0,
increases sitehits by one.

sitequeries The number of actual queries performed by a site for the agent.
This value is an indication for the query workload. When data or queries
are skewed, the distribution of sitequeries among the sites shows a clear
peak. A query is an action performed on a site, i.e. an insert, update or
select.

sitetraffic The number of hops made by an agent from a given site to another
site in the Armada system. Per site this can result in multiple incoming as
well as outgoing hops, referred to as traffic. Frequently used traffic paths
are an indication for classic bottlenecks.

sitefree The percentage of available space to store tuples. This can give insight
on how well equally loaded with data sites are, and hence if the data is
spread equally.

Further, we have the site capacity and box capacity. Also, multiple data
boxes can be placed on a site, which allows to reuse a site (sitefree) if no empty
sites are left.

It is seducing to think of the sites in the association tree as an in logical
rings around the origin ordered system. As such, each ring is another step away
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from the origin. It cannot be said that the hop count to reach one site from
the other equals the ring distance as the actual traversed path may take more
hops given the tree structure of the association tree. More importantly, the ring
distance only works as long as sites are used only once for storing a box. As
soon as a site is “reused” the association tree becomes cyclic. With cycles in
the graph it is no longer trivial to put sites on a ring. Apart from if or if not
it would be possible to define a rule to still do the ring assignment, it becomes
unclear how the resulting rings should be interpreted. Therefore any metrics
that rely on ring distances are bound to become void once cycles appear. It is
to be expected that cycles become a natural part of Armada to achieve a higher
storage load, spreading throughout the available nodes and a way to gain access
to trail information from other parts of the tree. The latter can help to reduce
the hopcount.

6.4 Policies

To study the effects of various facets of a simulation, those facets need to be
changed following a strategy to prove or falsify a given hypothesis. We iden-
tified four facets that are important for the performance of an Armada imple-
mentation in speed and space utilisation. For each facet, we identify a number
of policies that define a certain action or behaviour for the given facet.

6.4.1 Chunk Policies

Chunking splits data from one box into two new ones. In our experiments, we
use adaptive chunking. The chunk function is the divider function, that splits
the original box in two. Further, for each chunk operation, one of the new boxes
is placed on the site of the original box. As a result only one new site has to be
found, and the amount of data that needs to be physically moved is limited.
With adaptive chunking, the chunking operations that are executed fully
automatic are influenced by the environment as observed by the box. A simple
idea is to have each box monitor the inserts being done. A simple “statistic”
in this way can be to keep a boolean indicating whether the inserts done on
the box have been “appends” only, considering a given (sort) order. If so, the
divider can be set to retain very little slack space, which means for instance in
a linear insertion case that the site load is high, comparing to the normal half
min/max 50% slack space chunk function. If a box on a site chunked with no
slack space has a new value inserted, this cannot be an append in sorted order
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any more (due to the chunk with no slack space) and hence, the append only
flag is not set, so a regular 50% slack space chunk can be performed.

6.4.2 Trail Policies

During simulation, it quickly becomes clear that there are extensions possible
to the Armada model that allow for more precise redirections. Often these ex-
tensions can be a part of the standard amount of trails being exchanged during
a chunk operation.

Vanilla Armada Follow the Armada model unconditionally. Each site contains
boxes, which have a predecessor trail, the self step, and the successor
steps. This bare-bone approach forces each agent to go around in the
Armada using the absolute minimum of available data.

Sibling Steps Upon each chunk operation, add sibling information to the sites
involved. This is a small optimisation on top of the vanilla Armada model,
as this adds extra trails which allows successors of a node to redirect to
each other without having to contact their parent box. In practice, this
means that the newly created site gets an extra pointer to its sibling, be-
cause its sibling already has this pointer via its parent, which is hosted on
the same site. However, for the new site this also holds (there is a pointer
to the parent box/site) and hence adding the sibling trail does not help
much here: the new site can send the agent to the original site, which
knows what the specific box is, which is irrelevant for the navigational
structure. Therefore, this policy only makes sense when both new boxes
are stored on a new site.

Agent Hinting Agents that are being redirected to an inactive box (hence re-
quiring another redirect), hint the site that offered an out of date redirect
with the updated (more specific) trail. The site can use that trail the next
time an agents visits to possibly direct more accurately. The possibilities
here are numerous. Agents can hint only for successor steps (only op-
timising the current sub-tree) or for predecessor steps (which quite often
trigger another redirect) as well. Agents can only perform one level e.g. A
to B, B to C, C to D, only adding D to A, or D to B, or both/all levels.
Rationale here needs to be found with respect to the association trees.
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6.4.3 Agent Policies

The Agent in an Armada simulation is the entity that performs most of the work.
It basically deals with the entire traversing through the system, by means of
following redirects. On successive queries, the agent has a number of options
to try and minimise the amount of hops taken for each query. The baseline
approach for an Agent is the naive strategy of the Lazy Policy.

Lazy A Lazy agent starts each query at the same site, which is the only site it
knows, the origin. Obviously this stresses the origin with a magnificent
hit-count, but allows the origin to exercise in redirecting to the right site
at once (e.g. in combination with Agent Hinting Trail policy).

Random This type of agent picks a random site from the cluster for each query.
It uses no knowledge whatsoever, but truly randomises to spread the load
over the cluster. This avoids the origin being a hot spot, via a tech-
nique that could be employed by e.g. DNS load balancing. This approach
stresses each site in the cluster for its ability to send the agent in the right
direction.

Sticky Sticky agents stick to the last site they have touched, for their next query.
This strategy is in particular useful when doing a linear insertion, as it
most of the time yields in a hopcount = 0. Sticky is a very cheap policy
that tries to do slightly better by not disregarding the last known state of
the Armada.

Cache Smart agents cache the lineage trails they see when traversing the Ar-
mada, and use that cache prior contacting a site to make an educated
guess what would be the most appropriate site to contact, e.g. the site
closest to the target. Obviously, out of date cached trails can be thrown
away when being encountered to reduce the search space. A caching cli-
ent can ultimately get a hopcount close to 0, as its cached trails represent
the part of the Armada it is interested in. However, this is an ego-centric
policy of which no other agents benefit. It is not realistic to have all trails
for the entire Armada cached, as this may be a large amount. This large
amount may not be an issue memory wise, but it will be a performance
issue given that the search space increases. Hence, the agent needs to
define a policy for itself that defines which trails need to be kept, with a
limited number of cache buckets.
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6.4.4 Site Policies

A site in the Armada hosts boxes. The model does not limit a site to host just
a single box. While hosting multiple (active) boxes is not difficult, the capacity
of a site is no longer subject to the utilisation of a single box. In particular the
process of finding a new site to host a box as result of a chunk operation is
affected by the decision whether sites with available capacity can be reused or
not.

Single Box Each site contains at most one box. If there are no more available
sites, the Armada cannot grow any further, even though some sites may
be hardly full storage wise.

Reuse Free Sites are used based on their available storage space. From the
pool of available sites, the site site with the most available storage space
is used, assuming all sites have an equal storage space.

6.5 Data Sets

The shape of an Armada tree is influenced by the data it contains and the order
in which it was inserted. To experiment with different tree shapes, and to see
the effect of them on the various metrics previously defined, we used the fol-
lowing carefully crafted workloads. For each workload we used the same value
range starting at 0, ending at some predefined positive number. By doing this,
the sets can be used to query the other sets without getting an artificial skew
because of a range mismatch. This avoids either having a high skew on the
edge node because all high values are mapped onto it, or having a skew on a
range of nodes because the other nodes cover values not in the value range of
the query set.

Linear The linear set is a simple ascending counter with regular gaps to fill up
to the desired value range. Since no duplicates are allowed, each value
appears at most once in the Armada. The gaps between the values are
equal, and hence do not affect chunking decisions due to the introduction
of skew.

Random A randomised list of values. Duplicates are forced to occur during the
generation process. 10% of duplicates are generated and gaps are likely
to occur. The duplicate values are randomly spread throughout the set.
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Uniform Again a randomised list of values, but using a perfect even distribu-
tion. While gaps are still possible, duplicates are not allowed. The random
order of the values, causes unlike the Linear set to have unordered inser-
tion of values.

Zipf Another random input based set, but with a value probability following a
Zipf distribution. In this set, typically a small amount of values are very
popular, and likely to occur more than once, while other values hardly
occuy, if at all. This distribution clearly is very skewed. In the generated
set we chose to have the popular items to be those with a low value.

Real World A set of integer values extracted from the entire MonetDB/SQL test
set. Skew, duplicates and gaps are occurring here, as many tests use the
same values, very close values and entirely different ranges. This set does
not have the fixed range the other sets use, because the real world values
simply are fixed due to being real. This set is hence only of limited use in
comparisons.

6.6 Data Loading

The previously described sets generate Armada trees with characteristic shapes
when being inserted. Starting with the Linear set, the simple ascending nature
causes the values to be inserted into the most recently created box, which is
chunked once its capacity is exceeded. The lineage tree of this set eventually is a
deep tree, where each time a chunk is performed, the last added box is chunked.
Because per the chosen chunk policy one box is retained on the original site, and
the other containing the overflow values on a new site, the resulting association
tree is a simple chain of successive sites being attached to each other. See
Figure 6.1.

Random and Uniform The Random and Uniform sets result in a balanced
lineage tree, see Figures 6.2 and 6.3. As values are scattered, the tree is built by
approximately filling all of its active boxes evenly for the value range they cover.
The association tree on the other hand shows a pattern where the older the site,
the more offspring it has. Since all sites represent for the time being at most
one active box, each site can overflow similar to why the lineage tree grows in
a balanced manner. This means any site can get a new site association. Hence,
the longer a site is around, the more site associations it gets due to chunks.
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(a) Lineage tree

(b) Association tree

Figure 6.1: Loading the Linear set.
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(a) Lineage tree

(b) Association tree

Figure 6.2: Loading the Random set.
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Obviously, the origin site has the most associations, with its direct offspring
following in association count. However, not only its generation defines the
number of associations, as also the age of a site is related. So typically what
can be seen here is that each site has less associations to offspring itself, than
its parent has, and within a generation every site has less offspring associations
than the sites in his generation that are older. In total this gives a diagonal
shape to the association tree.

Zipf In a Zipf distribution typically a few values are very popular and rare
values are almost never used. The Zipf set we generated uses a Zipf probability
for each value to occur. As random values are chosen, their chance of being put
in the set is based on the Zipf chance of the value. This way the lower the value,
the higher the chance it ends up in the set. The resulting set is skewed towards
low values. This shows up in the lineage and association trees, see Figure 6.4.
The chunk operator places the overflow values on a new site. Because small
values occur more often, in the Zipf set, this means that more often a box needs
to be chunked that is the non-overflow part of a previous chunk operation. This
typically leads to a slight opposite of the Linear set, where the overflow part is
constantly chunked. In the Zipf lineage tree, the boxes on the older sites are re-
chunked over and over again, resulting in a deep, not very wide tree. Because
there are also higher values, the tree is not as narrow as the lineage tree. For the
association tree the re-chunking means that old sites have many connections.
Because of this property the resulting association tree is very wide, and not so
deep.

Real World The Real World set is based on data values harvested from the
MonetDB/SQL test set and therefore not following any special pattern. The
lineage and association trees show however that the set contains parts that
follow the Linear set and parts that appear to have a Zipf or other high-skewed
distribution, see Figure 6.5. This observation matches the nature of the set,
which has many duplicate values as a result of slightly modified copied and
pasted tests, as well as some linear sequence to just insert a sufficient amount of
tuples with distinct values. In particularly interesting is the constant alternation
between high and low values that occurs at almost every place in the set, except
from a piece with a linear nature. The tail of this set shows an alternating
pattern for low and high values that linearly increase, the high value much
more than the lower value. In particular the hop count graphs that we discuss
later on visualise this pattern very well.
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(a) Lineage tree

(b) Association tree

Figure 6.5: Loading the Real World set.
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Agent Policies While the shapes of the lineage and association trees depend
on the data set being loaded, the actual agent policy used does not affect the
shape at all. Though, it influences the performance of the agent during the
loading. There is not just one “best” policy, as efficiency in terms of a minimal
amount of hops depends on the set in use. The Linear set typically has a “moving
hot-spot” as it appends to the last added box. The Lazy policy here gets an
increasing hop-count for every query after a chunk operation has been applied,
see Figure 6.6. The policy that is well suited for this set is the Sticky policy,
as it nicely “follows” the moving hot-spot, and needs at most one hop right
after a chunk operation has taken place to jump to the new site. The Random
policy performs better than the Lazy policy simply because it has a chance of
accidentally picking a site closer to the moving hot-spot. As the policy is based
on pure randomness the performance in terms of hop counts is on average half
of the depth of the association tree. Lastly, the Caching policy performs on any
set very well, simply because it has all trail information locally as soon as it has
visited each location once. Because we assume an unlimited cache, this policy
is always very well performing. Because of this we skip discussion of this policy
for the other sets.

Random and Uniform The Random and Uniform sets cause an agent to be
jumping back and forth between sites in the Armada, see Figures 6.7 and 6.8.
Since this cannot be predicted, without a cache each guess is as wrong posi-
tioned as any other. On average, the Sticky policy does not perform any better
than the Random policy for this reason. Interestingly, the Lazy policy is the best
for these sets when inserting the data. The reason behind this is that because
it always starts at the origin, it never has to jump back to the origin, as the
other policies have to when they start in a wrong branch of the Armada tree.
This makes the Lazy policy on average around half a hop shorter. This can be
explained by occasional “luck” of the Random and Sticky policies when they
happen to start close to the target.

Zipf The Zipf set, even though it is skewed, shows the same pattern as the
Random and Uniform sets, see Figure 6.9. This is not so surprising considering
the Zipf set is also a random set, but with a Zipf probability. Because the tree
is less deep, the advantage the Lazy policy has is bigger, resulting in almost one
hop better performance than the Random and Sticky policies.
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6.7 Querying

So far we have only observed the number of hops taken per insert during the
loading phase. A constructed Armada tree can be queried again, as part of
normal querying operations on an (existing) database. To further study the
agent policies, for each loaded set, we query it using all sets per agent policy.
Within the sets, not the same values have to be used. This means that when
the loading and querying use different sets, values can happen not to be found.
Though, a matching (responsible) site has to be found in any case.

Lazy Policy Querying the Linear set using a lazy policy in general yields in
many hops. Obviously when querying with the Linear set itself the number of
hops necessary per query continuously increases as the values are found further
away, deeper in the tree. The Random and Linear sets have stable hop counts
that on average are close to around half of the association tree depth. This
nicely demonstrates that both sets are truly random given that the average is
in the middle of the value spectrum. The Zipf set is as stable as the other
random sets, but has much less hops. This can be explained by the nature of
the set, where lower values are much more likely to occur than higher ones.
As a result the average value is not in the middle of the value spectrum, but
below it. Eventually the Real World set shows a pattern where first around the
same values at on average 32 hops are retrieved for around 1000 queries, then
some queries that do not require any hops, followed by a peak leading to the
maximum depth of the association tree. After around 1000 more queries close
to the origin, the remaining 3000 queries of the set are all around 15 hops.

Random Policy When we switch from a lazy policy to a random agent policy,
the number of hops taken per query are reduced by about 50% of the hops taken
with the lazy policy. This can be easily explained, as the random policy on the
linear set jumps into the tree, always in the right direction. In the same way that
the random query sets on average target the middle of the value spectrum, the
random agent policy starts querying on average in the middle of the association
tree, which obviously cuts the maximum hop count in half. The Linear set
using this policy shows random behaviour, but on average shows an increasing
hop count to only half of the hop count necessary when using the lazy policy.
Where the line in aforementioned policy was straight, in the Random policy it
is slightly curved in a quadratic shape. This can be explained when considering
the values being queried for. Since the Random policy on average positions the
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agent in the middle of the association tree, lower values can be quickly found
by jumping back immediately in the lineage trail as far as required, yielding in
at most two hops. However, when values are requested that are deeper down in
the tree than the start position, a one by one hopping down to the target has to
be performed, with a higher hop count. The random effect makes this happen
gradually.

Sticky Policy The sticky policy achieves the same hop counts for the Random
and Uniform sets, because the positioning of the agent for those sets is like the
random policy since the values queried are in a random order and hence end up
at random sites. Since the Zipf set favours lower values, with the sticky policy,
the agent more often ends up at a site close to the origin, resulting in a bigger
chance than the random policy that the agent has to hop one by one away from
the origin. The Real World set shows no peak using the sticky policy, as this
peak consists of a linear sequence, which the sticky policy is able to efficiently
follow. For the other parts of the set, the sticky policy results in higher hop
counts, because the previous value is far way from the next.

Cache Policy The cache policy obviously has very low hop counts, simply
because it can position the agent very well for every query already starting
once it has learned a part of the tree.

Random Set The Random set has much smaller hop counts compared to the
Linear set, see Figure 6.11. This is due to the association tree depth of the
Random set being much smaller as a result of better tree balancing caused by
the random value insertions. Like before, the Random, Uniform and Zipf sets
show a steady average hop count over all queries for the lazy, random and
sticky agent policies. However, unlike with the Linear set, the lazy policy is the
most efficient in terms of hop counts here. This difference of on average half a
hop can be explained by the random positioning of the agent no longer being
a jump in the right direction. The association trees for the Random, Uniform
and Zipf sets are wide, and hence a random jump has a high chance of ending
up in a wrong branch of the tree. The latter requires a jump back to the origin,
which is the position of the lazy policy. Therefore the latter policy is on average
more efficient on these sets. The Linear set, when queried on the Random set,
shows different behaviour though under different policies. The sticky policy, as
expected, allows to reduce the hop count during querying quite dramatically.
The association tree built has due to the fragmentation function the property
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of sorted order, allowing the sticky policy to need at most one hop on a linear
query sequence. Hence it again removes the peak from the Real World set.

Uniform Set When querying the Uniform set with the other sets using the
four agent policies, a slight variation on the loaded Random set is the result,
see Figure 6.12. Since the Random set only has some duplicates, which the
Uniform set does not have, this is not surprising. There are no noteworthy
differences to be found, and the same remarks as for the Random set hold.

Zipf Set Because the Zipf set has an association tree with a smaller depth than
the Random and Uniform sets, there are less hops possible in total. As expected,
the Uniform and Random sets are again steady, but close to the Zipf query hop
counts for all policies, see Figure 6.13. Because the depth of the tree is smaller,
the positioning error of the agent is less punishing, hence in total less hops need
to be taken. The higher values that are not in the Zipf set, are simply not found,
but the responsible site is found earlier because of the smaller depth. Because
the Zipf set is a random set, the lazy policy performs slightly better as with the
Random and Uniform load sets. The Real World set shows a different pattern,
since the lower values are more fine grained fragmented, and successive queries
need different sites now.

Real World Set The loaded Real World set has a very wide association tree
with a small depth, except for one very deep branch. A random agent policy for
this reason has an effect of on average one hop on top of the lazy policy because
of the jump back to the origin, see Figure 6.14. Because the Real World set has
a value range that is much smaller than the other sets, querying it with those
quickly yields in out of scope value retrieval. The effect of this is that the one
box that is responsible for the last range that reaches to theoretical infinity is
queried for all these values. This can very well be observed through the Linear
set using the lazy policy. After around 1700 queries, the hop count does not
change any more, indicating the value range has been exceeded. The Linear set
also shows that most of the lower values are found on the same depth in the
association tree, most probably on the same site. In between a peak is found
where the single deep branch is being followed. Obviously, the sticky agent
policy effectively removes most of the hops for the Linear set here as the last
visited site is in most cases the target for the next query. The Real World set
when being queried shows how the values are being distributed over the set.
The peak that the Linear set encounters is a result of the values at the end of
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the Real World set. Note that the hop counts for the Real World set appear to
be not as high as the peak of the Linear set. This is an effect of the moving
averages being compared, where the Real World set apparently has alternating
values causing high and low hop counts. The sticky agent policy helps to reduce
the hop counts in the small linear part of the Real World set.

Cache Policy From the loading and querying simulations we can conclude
that there is no single agent policy that suits best for all cases. Without any help
from the Armada cluster, the lazy policy achieves the lowest hop counts for any
random based set, ignoring the cache policy. The sticky policy only performs
well on a set that makes the agent often visit the same site in succession. This
typically happens in a linear sequence or stable value case. The sticky policy
can be considered to be a limited cache policy. It stores at most one location,
but does not use the information present therein and always unconditionally
returns to this location stored in the “cache”.

The cache policy which we have mostly ignored before, outperforms any
other policy by far. Its superior low hop counts are mainly due to the unlimited
amount of cache slots which eventually allow to collect all trails available in the
entire Armada. Mainly because of this unrealistically high (and theoretically
unbounded) storage capacity, this policy in its current form is considered to be
artificial and only feasible in a hypothetical world. The more trails are stored,
the longer the time it takes to search through these trails. Since trails are only
appended, this just makes the cache lookup slower and slower over time. The
problem is made worse given that each trail has to be searched step by step to
find a possible best match from the cache. However, its supreme performance
win cannot be ignored. To be able to understand this performance and possibly
approach it with a much more realistic policy, we have to look in more detail
into the association tree and in particular where most of our hops go.

The Random sets are a good starting point for this performance quest. They
show a very stable average of hop counts for all policies, where the lazy policy
performs slightly better. The reason for this, is the price one has to pay for
an association tree branch mis-prediction, which leads to a jump back — in the
worst case to the origin. Such jump back to the origin, the lazy policy never has
to make, since it always starts there. The cache policy performs so well on the
same set, simply because it hardly mis-predicts. Because it considers its own
cache, it always knows the origin, resulting in an equal to lazy performance in
the worst case. However, if there is a cache item for the right branch, the cache
policy can use it, jumping ahead in the right direction. The more trails cached,
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Figure 6.15: Association trial intersections.

the more precise the cache policy becomes, which eventually means that the
chosen site for a query is immediately the right one.

6.8 Cache Policies

Our random agent policy simply does not take any branches into account. If it
ends up in the right branch, then this is pure luck. The sticky policy only ends
up in the right branch if the workload allows for this, as mentioned before. The
cache policy gets most of its performance from jumping in the right branch of
the tree. Hence, an agent would greatly benefit from having a cache which
contains a number of trails for separate branches, which are taken as starting
point. Experiments are necessary to show the trade-off of storing those trails
against the gained performance. A brute force policy to just store the last x
different trails would help, but probably needlessly store a lot of duplicate data.
As each trail includes the full parent trail most of the information may overlap.
It would be interesting to try and detect this overlap, and to store the trail that
has the most depth. Problem here is to decide when it is or is not paying off
to discard a previous trail in favour of a newer one. The common part of both
trails may be small, and hence resulting in loss of branch information.

Cache Metric A metric that we can use here is the length of the trails after
their common part starting from the origin. Consider Figure 6.15 depicting
three situations where two trails intersect. In the figure, only the sites refer-
enced in the trails are depicted. This equals the association tree, and hence
can have a situation as in Figure 6.15(a) where trail A € B. Obviously, for
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this situation, trail B can be chosen without losing any information, as we can
reach the same sites as before. As a metric, for this situation we can define
that by replacing B with A, we reduce the possible hops we have to take for
any query at maximum by 2 hops. At the same time, we do not add any ad-
ditional hops in the worst case scenario, as all sites from A are contained in
B. Figure 6.15(b) on the other hand shows trail B which is much more specific
than A, but does not fully contain A. In the depicted case, it may be evident
that the loss of discarding trail A does not outweigh the win of storing trail B.
The to be discarded site from A can be reached via B by stepping from the last
site in the common part of both trails. In terms of hops, this case reduces the
number of hops at maximum by 4, while it increases them at maximum by one.
Lastly Figure 6.15(c) shows trail A and B where the overlap is partial and the
benefit of either over the other is not obviously clear. Applying our metric, the
maximum number of hops is decreased by 4, increased with 3. Though the loss
of either branch is substantial. It may be clear that when the cache slots are
all filled, an algorithm to find which trail should be dropped — if any — needs
to be run. From the metric used before, we can define the benefit ratio as the
maximum number of reduced hops divided by the maximum number of added
hops. This ratio has a value greater than 1 for trail A against B if B reduces
more hops, than those lost by removing A. When the ratio is smaller than 1,
trail A is favourable for the system as a whole. When there is no loss such as in
Figure 6.15(a), the ratio cannot be computed. This is not a problem, as in such
case A can always be replaced by B. A cache insertion algorithm that makes
use of this ratio is depicted in Algorithms 6.1 and 6.2.

Figure 6.16 depicts the final state of the cache trails after a query run when
the cache allows for 5 trails. While 5 trails are insufficient for each tree to reach
every leaf node, the figure clearly points out that the available trails are not
positioned in the most effective locations. In particular, a lot of redundancy is
contained in the used trails.

Benefit Ratio From Figure 6.17 the average number of hops taken per query
for various cache sizes can be read. From the Random set in Figure 6.17(b) it
immediately shows up that the performance for 1, 2 and 3 cache trails is roughly
the same. The next performance wise jump is made by 4 and 5 cache trails. This
behaviour can be explained by the graph from Figure 6.16(b). Obviously the
leftmost (and longest) trail is always in the cache, as it is the most beneficial trail
according to the benefit ratio. The algorithm adds the leftmost two next trails to
the cache first, resulting in an almost equal performance. The trails have a very
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Algorithm 6.1 Cache insertion algorithm.

candidate < @
maxratio <= 1
for each cache t do
ratio < benefit(newtrail, t)
if not ratio then
replace(t, newtrail)
break
else if ratio > maxratio then
maxratio < ratio
candidate <t
end if
end for
if candidate # @ then
replace(cache, candidate, newtrail)
end if

Algorithm 6.2 Implementation of the benefit function.

i<1
while A; # @ do
if Ai 7é Bi then
break
end if
i<i+1
end while
if not A; and not B; then
return 0
end if
if not A; then
return @
end if
lenA = len(A) —i
lenB =len(B) —i
return lenB — len A
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large common part, but are selected by the algorithm because they have a larger
benefit ratio than other (shorter) trails. The next added trail is the rightmost
trail from the figure, which explains the performance gap between 3 and 4 trails
in the cache. Adding the fourth trail from the left in case of 5 trails in the cache
results in the little performance win between 4 and 5 trails. It is obvious that
the chosen trails to cache are quite inefficient for the total picture. Instead a
cache utilisation such as chosen for the Zipf set in Figure 6.16(c) is much more
efficient. The hops diagram for this set in Figure 6.17(c) shows an improving
performance per added cache trail. The algorithm chooses better in this set
because it operates on such a wide association tree, where the deepest leafs are
all in a separate branch of the tree. Since the depth of most of these are equal,
the algorithm does not consider a trail which is almost contained in another
already cached one as better than one from another branch as happened in
Figure 6.16(b).

It is obvious that the algorithm in its current form is not choosing the ideal
trails for its cache. This is most prominently shown by Figure 6.16(d) where
three trails are used for the deepest branch. The two trails used for the single
site splits off of the main branch actually add very little (one hop) extra know-
ledge given the longest trail, considering other branches that are not in the
cache, but could have been cached instead. We can conclude that with the cur-
rent algorithm, the amount of overlap with other trails in the cache is ignored.
This results in trails that are very close to other cached trails to be added in
favour of other cached trails which have a smaller benefit ratio. The trail that
is added to the cache as a result simply is a loss in the total picture of the cache
coverage. The benefit ratio algorithm needs to be refined to take the overall
benefit for the cache as a whole into account when replacing a cached trail for
another.

Looking at the cache trail trees from Figure 6.16, it is persuading to think
that siblings are directly reachable from the trails themselves. However, this is
not true, as the vanilla Armada model defines not to include sibling information
in the sibling trails themselves. They only have the predecessor trail, hence this
information is not available. Also, because the trails are depicted on an associ-
ation tree, it is hard to see that there is a temporal relation between all direct
successors of the same step. This means that even if sibling information was
passed onto the successors, this still would not include the full set of siblings,
but only the siblings that were involved in the same chunk operation. For this
reason, the cache trails as depicted in the figures, describe the full “span” of
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the trails. Any optimisations to the cache replacement policy need to take into
account that only this information is contained in each cache trail.

Algorithm 6.3 The cacheappend function.

Require: new # @
cacheaddifnotcontained (new)
if size(cache) > MAXCACHESIZE then
removeleastfromcache()
end if

Algorithm 6.4 The cacheaddifnotcontained function.

for each cache t do
if t C new then
cachereplace(t, new)
return
else if t = new then
return
else if new C t then
return
end if
cacheadd(new)
end for

Improved Cache Algorithms 6.3, 6.4, 6.5 and 6.6 depict an improved version
of the cache replacement algorithm. Instead of comparing a new trail to each of
the trails in the cache separately, the new trail is compared to the other trails in
the cache as if it were part of the cache. This leads to removal of the trail in the
cache that results in the least loss in terms of benefit. The essential difference
between the first cache replacement algorithm and this algorithm is that the
benefit is no longer calculated based on solely the trail itself. The benefit is now
calculated as the number of hops that are reduced considering all other cache
trails. As a result, those sites (hops) that are in common with other trails do not
count for the benefit any more. For this, the longest part in common with the
other trails in the cache has to be determined, to calculate how many sites are
uniquely added to the list of known sites by the trail.



94 6.8.

CACHE POLICIES

Algorithm 6.5 The removeleastfromcache function.

miny, < inf
for each cache t do
b <= length(#)— commonlength(t)
if b < miny then
miny, <= b
cand =t
end if
end for
cacheremove(cand)

Algorithm 6.6 The commonlength function.

Require: ¢, # @
maxs <= 0
for each cache t. do
if t, = t; then
continue
end if
s < commonpart(t., t;)
if s > max, then
maxs < s
end if
end for
return maxs
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The cache replacement algorithm works by requiring one extra slot in the
cache to store a new trail. To ease the algorithm, a new trail is only added if it
is not already in the cache, or superseded by a trail from the cache. Also, when
a trail is found that supersedes a trail from the cache, it is used as replacement
for the superseded cache trail immediately. This way, trails added to the cache
are always trails that address a site which is not addressed by all others.

If the number of trails in the cache exceeds the maximum number of allowed
trails, the cache replacement algorithm is run to evict one trail from the cache
to be removed. The trail to be removed is chosen based on the afore described
benefit function. For each trail in the cache, the benefit is calculated, and the
trail with the smallest benefit is chosen to be removed. Figure 6.18 depicts a
situation of three trails. On the right of the picture the benefit calculation for
each of the trails is shown by taking the total length subtracted by the length of
the part of the trail in common. It is obvious that the trail with benefit 1 would
be evicted in favour of the other two with both a benefit of 2. Note that after
removing this trail, the benefits of the other two trails have to be recalculated
because the common parts may have changed, as is the case for the longest trail
in the figure.

It is to be expected that there is not always a single trail that has the lowest
benefit. There may very well be multiple trails matching. The algorithm re-
moves the oldest trail in such case, as it is based on a cache that is implemented
as a linked list, where new trails are appended to the tail. Hence, the first trail
found when traversing the list is the oldest. The rationale for doing this is that
the more recently added trails may better reflect the current query behaviour.

Gradual Improvement From Figure 6.19 it can be deduced that the second
generation cache trails replacement policy reaches a better final state of cached
trails. Compared to Figure 6.16 more branches are represented in the cache,
and trails with large overlapping parts are no longer present. This is entirely
conform the objectives of the improved replacement algorithm. The perform-
ance wise results are depicted in Figure 6.20. When compared to Figure 6.17
we observe that with 10 cache trails the second generation has an average per-
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Figure 6.19: Final state of second generation cache trails after querying.
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Figure 6.21: Calculations for three trails with equal benefits.

formance around half a hop per query, whereas the first generation delivered an
average performance of around 1 hop per query for the random sets. Unlike the
first generation, the second generation shows a more gradual performance im-
provement for the Random and Uniform sets per added trail to the cache size.
The Real World set in general has an improved performance with the second
generation cache replacement policy. However, for the cache size of one trail,
a peak can be seen for the second generation that is 1 hop higher than in the
first generation. The peak is caused by a linear query pattern, which values are
found in the long trail of the Real World association tree. The hops are caused
by the values that are stored in the start of the long trail. Once the values ad-
dress a site that has a longer trail than those stored in the cache, it is being
added, and hence the hops immediately drop to a minimum, as successive val-
ues at need one hop every time the site capacity has exceeded, like in the linear
case is happening. The single hop is explained by the benefit function disreg-
arding the common part of trails in the second generation. For this reason it
takes one site longer before the benefit is higher since the root node is always
shared with other trails.

Wide Coverage When observing the trail transitions in the cache using the
second generation cache replacement policy, situations similar to Figure 6.21
appeared to be common practice. What happens is that the dashed trail is
added to the cache, while the dotted trail is the oldest. All trails have an equal
benefit according to the second generation cache replacement policy, and hence
its default method of removing the oldest trail results in the two longest trail to
be kept, and the dotted trail to be removed. While in absolute terms all three
trails add the same to the system as whole, the dotted trail can be more useful
to the system considering heuristics. First sites up in the tree have a higher
chance of having many (direct and indirect) successors over sites lower in the
tree. For this reason, sites up in the tree possibly help for more queries, due
to their potential coverage. Second, sites up in the tree have a higher chance
of addressing a not yet addressed branch of the tree. As we have discussed
previously, getting distinguishing branches in the cache increases the theoretical
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coverage on the tree. Because of these heuristic hypothesises we refined the
second algorithm for the cases where an eviction decision is made for trails with
an equal benefit. Instead of choosing the oldest in the cache, an evaluation is
made aimed at retaining the trails targeting sites higher in the tree.

A few variants are possible to achieve the aforementioned goal. First the
algorithm could consider the common part of trails and prefer trails with a lower
common part as this means they distinguish themselves better from other trails,
than those with a large common part. Naturally, this favours short trails, as they
have a small common part given that the benefit of the trails being compared to
is the same. Short trails obviously address sites higher up in the tree. Secondly a
relative benefit based on the depth of the trail could be calculated. In the given
example from Figure 6.21 the dotted trail would have a benefit of 1 weighted
over a common trail of length 1. The dashed and normal trail have a benefit of
1 over 4, resulting in one fourth. Alternatively, the benefit is made relative to
the depth in the tree where the non common part of the trail starts. Effectively,
the same node is selected to be retained by both variants. Tests have indicated
no performance improvements compared to the previous generation. Since this
approach is a micro optimisation that only affects a few cases, this is not a
surprising outcome.

6.9 LRU Cache

Until now we have only considered caches based on the Armada lineage trail
structure. As a result our caches were focused on keeping the optimal trails
for the tree structure. The behaviour of the clients per their queries has been
ignored. Patterns of interest in only a specific part of the Armada are not recog-
nised by the till now implemented cache strategies. From observations of the
cache transitions, strategies that adapt to the current workload may improve
performance in cases where sibling nodes are alternatively selected to be in-
cluded in the cache. Those cases clearly indicate a localised query interest, but
cache trails are assigned for those sibling nodes, since other (longer) trails are
considered to be more valuable for the entire tree and any possible query.

We implemented a simple LRU cache strategy for Armada trails. Without
assuming any knowledge of trails, the LRU simply stores the trails that point to
the box for each query. Trails that already exist in the cache are removed and
reinserted. When the cache overflows, the trail that is least recently inserted is
removed.
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Figure 6.22: Final state of first generation LRU cache trails after querying.
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Figure 6.23 shows the average hopcount graphs for this LRU cache replace-
ment policy. Again the graph for the Linear set is omitted, as it is a straight line
close to zero hops on average. The LRU is obviously very well capable of “fol-
lowing” the linear case. The random sets show a steady and slightly worse per-
formance compared to the first non-LRU cache generation. In all cases adding
a cache trail results in a reduction of the average hop counts. More interesting
is the Real World set. It shows for more than one cache trail that the entire tail
starting from around the 1900™ query can be reached in close to zero hops.
This is very well explained because that entire tail consists of an alternating
low/high value sequence. Starting from two trails, the LRU can keep the low
and the high value sites in its cache and hence serve the query load very well.
Starting from 3 trails, the entire Real World set can be done with on average
less than 1 hop, which is quite effective.

Overlap Awareness Because the LRU cache does not take anything into ac-
count from the Armada model, but just stores trails, the chosen trails are not
optimal considering the entire path up to the root is used by the agent when
using the cache. From Figure 6.22 this particular problem can be observed, as
only 4 trails can be seen, while there are 5 in the cache. In all four cases there
is a trail that is fully contained in another in the cache, hence invisible in the
figures. Like we do in the non-LRU cache policies, the LRU could be extended
to recognise when trails are contained in each other and then move the largest
trail. When a site is found in the predecessors of a trail that matches, the trail
for that site is added to the LRU. Hence making the LRU aware of this, can
improve the effectiveness of the cache trails.

Experiments show that applying above strategy indeed improves the effect-
iveness of the cache trails. For all sets, a cache size of 50 is now sufficient to
reach a near zero hops performance where the previous generation was not able
to achieve that. Compared to the third generation non-LRU cache, the second
generation LRU cache is roughly half a hop worse in performance for the ran-
dom sets. The performance on the Real World set has not improved over the
previous generation, but still outperforms non-LRU caches.

Cache Performance Comparisons We have considered the agent’s query be-
haviour using a least recently used scheme, where the last used trails are kept
in the cache. This cache differs from the non-LRU caches in that it is fully driven
by the query load, possibly adapting to the query points of interest. However,
this strategy on average performs worse than non-LRU, trail logic based caches
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for all but one set. The cache replacement based on LRU may be too sensitive to
outliers and hence discard trails too often. An alternative here to adapt to the
query workload, is to use the usage rate of trails in the cache. This usage could
be either defined as the number of times the trail is used, or as the number of
times the sites contained in the trail are used. However, for such a strategy it is
necessary to keep the usage count for every trail or site, since otherwise trails
will never be added to the cache as they are never more used than those in the
cache. Keeping usage information about all possible trails or sites is as roughly
the same as having an unlimited cache, and hence not a viable solution.

Summary

The Armada agents have to locate data in the system. They do so by following
lineage trail information, available on every site. An Armada that has grown
large involves many sites, which all potentially can contain the data an agent is
looking for. While network connections are expensive, time wise, the more an
agent needs to hop around, the worse the performance.

Four agent policies have been studied to see the effect of them on five data
sets. While different sets result in trees of different depths, the hops taken by an
agent are affected by this depth. While some policies work reasonably well on
some sets, only the policy where the agent caches trails for later reuse reaches
a very good performance for all sets.

Since an unlimited cache is a rather unlimited resource claim, we conducted
several experiments with limited cache sizes. By revising our cache algorithms,
based on characteristics of Armada lineage trails, we reached an acceptable
amount of hops per query for a limited amount of cache. This result indicates
that the active Armada client is viable in terms of costs with respect to the
autonomy and distribution it allows.






SQL Approach

7.1 An Implementation’s Architecture

In an Armada cluster, querying is done by an Armada agent. This agent bounces
back and forth between nodes of the Armada when resolving queries. This way,
the agent relieves the nodes from performing query tasks and interacting with
their co-nodes. An important aspect of the agent is that it keeps track of the
lineage trail information that it encounters during query traversals through the
Armada. This particular behaviour allows the agent to start new queries on a
node that suits the best based on its own knowledge. By doing this, an agent
avoids needlessly querying nodes that cannot answer its question. In addition
this implements a strategy to bypass the origin node in most cases, effectuating
hot-spot avoidance.

Workers SQL systems currently do not have any means of providing feedback
with the user. This naturally rules out the interaction part of the Armada that
needs to go beyond the agent. Conceptually, Armada agents are not related
to the data hosting nodes in the system. Each agent comes in the form of a
special equipped database system, and needs to run on a node. Each node in
the Armada may offer agent functionality next to data hosting, but this is not
required. In case both agent and data share the same node, the lineage trail
information between the two can be shared to increase both their knowledge.
Agents interact with Armada nodes to execute queries, on behalf of a client.
While agents need to be able to find the Armada nodes, clients need to be able
to find an agent in order to execute a query. For agents it is sufficient to know
one node of the Armada, the lineage trails point the agent to the other nodes it
needs. However, for a client, such redirection is not in place. Agents can work
in a pool of “workers”, where a client just gets one assigned to perform a query.
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Here it is not important which agent is being assigned, and the pool may grow
or shrink based on the number of client requests.

Starting Point The problem yet remains how a client can get to an agent in the
system, willing to do the work. There are ample opportunities here, e.g. using
a DHT or an Armada structure. However, eventually they all need a starting
point. Either a server that can tell what key to look for, or a first server that
can point into the right direction. Hence, we assume that we just have a central
server that assigns an agent to a client via a simple redirection a job that is
simple enough not to become the actual bottle-neck of the system. The central
locator service, maintains a pool of all active agents. A client connects to the
locator and gets a redirect to an agent that handles the client’s query. This has
the advantage over e.g. DNS-based load balancing that the pool of agents can
change without information getting stale, such as out of date DNS entries. In
addition, statistics can be collected to be used to control the agent pool size,
because all clients first pass through the locator. Last, the locator could track
the load of the agents and try to assign new clients to the least loaded agents
or another scheme which allows for better load control than randomisation.

Catalog So far we have assumed that clients connect to agents, which in their
turn know how to deal with the entire “database” that is hosted in the cluster.
In reality, an Armada represents at most a table, but maybe even only a column
of such table. As result, many Armadas are present in the cluster, and each
agent needs to know about them, to be able to query them. Next to multiple
Armadas being present, there is also a relation between most of them. Several
columns form a table, some tables form a schema, and so on. Also this inform-
ation, usually referred to as a “catalog”, is necessary for each agent to function
properly. The catalog contains for each Armada at least one node that that hosts
that particular Armada — typically its origin — and all relations between the
Armadas. Note that growth operations applied to each individual Armada need
no modifications to the catalog. The catalog only needs to be modified, when
new Armadas are added, old ones removed, et-cetera. Given that such modific-
ations to this catalog are rare, it can be stored centrally, without performance
penalties. An already central place in the system is the locator, which assigns
an agent to each client request. Storing the catalog in the locator, allows each
agent to retrieve catalog information by contacting the locator. However, the
locator may soon get overloaded by the many requests of the agents, for this
relatively static data. Hence, each agent can replicate the catalog for its own
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private use. Here a consistency problem arises, but given the nature of infre-
quent updates to the catalog, a simple pushed based update from the locator to
the agents is sufficient.

For each agent that is created to serve in the system, an initiation ritual has
to be performed, such that the agent can start serving client queries. This ritual
includes making itself known to the locator and retrieving catalog information
such that queries can be resolved. The catalog being received is simply a copy
from the locator’s catalog. After this has been set up, the agent is registered with
the locator, which can start assigning clients to the agent. Note that the catalog
does not include the state of each Armada being referenced. The agent starts
with a clean record, and as such its first queries are not well targeted. However,
along the way the agent soon builds an internal representation of the Armadas
it deals with in terms of cached trails, allowing for a smaller data search time.
Once an update is made to the catalog, the locator is being updated. It functions
as master “database” for all agents as “replicas”. The locator can send out direct
updates for all the agents. However, this generates a direct load to perform all
these updates, and may on the agent side conflict with pending actions. Hence,
a simple delayed update strategy can be used by the locator. Once the locator
assigns a client to an agent, it first sends all pending updates to the agent. Since
these updates are small and fast operations the delay for the client is negligible
while it performs an update of the agent just at the moment when it is necessary,
keeping the catalog for the client unmodified — i.e. no transaction aborts due
to catalog updates.

Using this scheme, existing agents can drop out by simply denying connec-
tions from the locator. Once the locator notices that an agent no longer re-
sponds, or appears to be entirely missing, it simply unregisters it from the pool.
From that point the agent is not considered to be an agent any more, and since
it is no longer in the pool, it is not assigned any client requests. In fact, the
locator is not aware of its existence any more. If said agent becomes available
again, it simply has to register itself again with the locator, as if it were a new
agent. This means its catalog is replaced with a fresh copy from the locator.
The cached lineage trails that the agent still has can be kept, as the information
stored in them is never incorrect; at most out of date. This can give a recon-
ciling agent a jump start due to its previously acquired knowledge about the
Armadas.

Catalog Updates An update to the catalog is typically made by a client query.
An operation such as creating a new table, and hence a new Armada, needs
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to be stored in the catalog. If the agent dealing with such operation stores
the modification in its own catalog, conflicts may arise, and other agents are
not able to see the new table. Hence, updates to the catalog need to be made
on the locator, and immediately synced with the agent performing the update,
such that it can continue processing its client’s queries. In detail, adding a table
or column requires new Armadas for those to be created. When such update
request arrives at the locator, it creates new Armadas as necessary on nodes in
the system, and stores those in its catalog. This procedure of finding a suitable
node in the system is again supported by the locator in the system.

Performing Operations For each chunk or clone operation and for each Ar-
mada creation, a new node in the system has to be found. The locator maintains
next to a pool of known agents, a pool of data nodes. Once a node wants to
perform a chunk or clone operation, or an agent requested a new Armada to
be created, the locator picks a node from its data pool. The strategies for pick-
ing a node from the pool may be based on simple heuristics such as available
resources or usage statistics. Alternatively bidding procedures can take place
to pick a site from the pool. In any case, the locator only maintains the pool
of nodes and sends messages to each node to obtain information about their
current state. Once a node is found, a new box is created on the node, and its
trail stored in the catalog, effectuating the operation.

Creating a new agent in this system, is a relatively cheap operation. Basically
only the catalog needs to be transferred, and the agent is ready. This makes the
loss of an agent only a problem with regard to the available agents in the pool
and their workload. Since the state (and involved nodes) of each Armada is not
recorded in the catalog, all this information needs not to be copied. This is an
advantage over systems where all information about all participating nodes is
being kept in the catalog, as this requires much more data copying, as well as
keeping that data consistent between the copies.

7.2 SQL Armada

The locator architecture lays a foundation for essentially getting a client to per-
form a query on an Armada. With SQL being the de-facto query language of
database systems, we studied the feasibility to implement the Armada model
in an SQL database. Mapping the basic metadata administration and structural
operations of the Armada model to standard SQL allows us to strive after a
minimal-invasive Armada-implementation, i.e. instead of pushing the Armada
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functionality inside existing (or new) SQL processors, we simply add it on-
top. This approach does not only allow for a system-independent Armada that
could even become a heterogeneous system using different DBMSs at differ-
ent nodes/sites, but also helps to leverage mature DBMSs technology for local
query processing.

7.2.1 Simple example

In Figure 7.1 the ideas of the Armada model are graphically represented. Right-
most in the picture, the lineage tree of all boxes is shown. From those boxes,
only three are active, meaning they have data. Those boxes’ data are depicted in
the middle bar, which represents the full table data, depicted on the left in the
figure. As can be seen, the union of all active boxes’ data results in the original
table again. In our mapping to SQL, we use this particular observation. From

table chunks boxes

.

Figure 7.1: Sample Armada with 5 boxes.

the lineage trails in Figure 7.2 we can see that boxes B, and B, are not active
any more, as they have successors. Boxes By, B3 and B, contain the actual data
in the Armada. Furthermore, B,, B, and B, are positioned on the same site, S;.

An Armada such as in Figure 7.1 can emerge as an evolutionary process over
time. Each Armada starts as a single origin box, which upon need is chunked.
Thereby, new sites can host boxes, to extend the Armada in its evolution. In the
example, box B, and B, on site S; were chunked over time to make room for
new data.
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Figure 7.2: Sample Armada lineage trails.

7.3 Armada Evolution

In a typical database environment, data is available in tables. These database
objects are subject to modifications, in particular growth. The Armada model
supports these modifications in the case of growth by splitting a table into mul-
tiple tables. This can happen when this is required, and Armada keeps the
administration. An important aspect within the Armada model here is that each
site is considered autonomous. This means that such split is a decision in agree-
ment with the sites involved in the split, and can be initiated by the site hosting
the data.

This autonomy reflects in our view on the role of the client within an Ar-
mada. Unlike conventional clients, in Armada a client is active. This means for
a client that it plays a central role in query execution. Instead of sites contacting
other sites during query execution, the active client bounces between the sites.

Due to the autonomy of the sites, they mainly manage themselves. A site can
decide that it needs to chunk its data when resources get scarce. Or, when the
load is high, to clone its data. These operations can happen whenever the need
arises to do so, without intervention of a client as long as sites are available and
willing to co-operate.

Table Chunking Simply put, the Armada model allows to break up a table
in two (or more) sub tables. This split is done based on a chunk function that
specifies what part of the original data goes into which of the new tables. After
a break up of a table, two new tables are produced and the original table is
removed. References to the original table, be it in the system itself, or by users,
do not work any more after this operation. To solve this, one of the new tables
can be renamed to the original table. This does solve the table from being
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unavailable, but introduces confusion as the new table obviously doesn’t hold
the same data as the original one. Alternatively, all references to the original
table can be updated to point to the new ones. This might be hard to achieve
(e.g. humans remembering the original name) and undesirable, as now two
tables have to be used instead of the original one.

Finally, to overcome the problems imposed by the previous two solutions,
a special object can be provided to indicate that the original table was broken
up in two. The function of this object is to be both transparent and purely
informative about the break up. The object itself simply represents the union
of the two sub tables, like the inactive box in the Armada model. It is quite
naturally covered in SQL by means of views.

7.4 Seamless Armada-SQL Integration

With the design for a self-managed distributed Armada system at hand, we now
turn our attention towards its implementation. Striving after a minimal-invasive
and widely portable solution, we now describe how to map the basic metadata
administration and structural operations of the Armada model to standard SQL.

7.4.1 Chunking

Each Armada starts at a single site, as a single table. In the SQL world this is an
ordinary relation, e.g.:

CREATE TABLE treasures (

bag int,

name varchar (64),

coins int,

CONSTRAINT treasures_bag_pkey PRIMARY KEY (bag)
);

This simple table keeps track of some treasures on site Sy. Each bag has a
number which is unique, as defined by the primary key. The Armada model
defines that this table can be broken up in two or more new tables. This has
the effect of the data being spread over these new tables, which represent the
boxes from the Armada model. Breaking up the original table in two, is done
as follows.

First the new tables (boxes) have to be created. The creation is followed
by insertion of data from the original table. The creation of the box is like the
schema of the original table using the following template:
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CREATE TABLE {armada}_B{boxid} (
{columndefinitions},
CONSTRAINT {armada}_B{boxid}_{pkey}_pkey
PRIMARY KEY {pkey},
CONSTRAINT {armada}_B{boxid}_{pkey}_check
CHECK ({if:contrachunk}NOT{fi}
{armada}_F{funcid} ({pkey}))
)

In this template, variable parts are wrapped between { and }. The new tables
are named after the original table, {armada}. To distinguish them they have a
trailing _B{boxid} which includes the unique id of the box (table). In the tem-
plate, an extra CHECK constraint is added that checks the primary key {pkey}
on validity for the box. A key is not valid, when the used chunk function
{funcid} does not hold. Two new tables are created: one that holds the data
that matches the chunk function and one that holds the data that does NOT
match. The {columndefinitions} and {pkey} are simply inherited from the
original table’s schema. For the original treasures table, this template results in
the following create statements:

CREATE TABLE treasures_Bl (

bag int,
name varchar (64),
coins int,

CONSTRAINT treasures_Bl_bag_pkey PRIMARY KEY (bag),
CONSTRAINT treasures_BIl_bag_check
CHECK (treasures_F1 (bag))
)i

CREATE TABLE treasures_B2 (

bag int,
name varchar (64),
coins int,

CONSTRAINT treasures_B2_bag_pkey PRIMARY KEY (bag),
CONSTRAINT treasures_B2_bag_check
CHECK (NOT treasures_F1 (bag))

The next step is to fill the two new boxes with data from the original table,
such that that table can be removed in favour of the two new ones. The follow-
ing template applies:

SELECT INTO {armada}_B{boxid}

SELECT {columns}

FROM {armada}

WHERE {if:contrachunk}NOT{fi}
{armada}_F{funcid} ({pkey});

Via an ordinary SELECT INTO statement, only the data from the original table
that matches the boxes is inserted. Many fields in the template are the same as
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before. Because the templates used are abstract, we illustrate their functioning
with an example:

SELECT INTO treasures_Bl
SELECT bag, name, coins
FROM treasures
WHERE treasures_F1 (bag);

SELECT INTO treasures_B2
SELECT bag, name, coins
FROM treasures
WHERE NOT treasures_F1 (bag);

Copying over the data is trivial and includes the same functions as the tables’
CHECK function. Since the data was copied over to the two new boxes, the
original table can be dropped.

DROP TABLE treasures;

Finally, since the original table treasures is dropped, it disappears, as men-
tioned above. The special object that represents the union of the two new boxes,
is implemented by a view:

CREATE VIEW {armada} AS
SELECT {columns}
FROM (

SELECT {columns}
FROM {armada}_B{sucbhoxid}
WHERE {armada}_F{funcid} ({pkey});

UNION

SELECT {columns}
FROM {armada}_B{contrasucboxid}
WHERE NOT {armada}_F{funcid} ({pkey});

) AS {armada};

Note that no explicit typing information is included in the view: the SQL stand-
ard does not allow us to explicitly encode it, hence the database system has to
get this information based on the local box referred to in the view. The variables
{sucboxid} and {contrasucboxid} refer to the box ids of the created two new
tables. In the example:

CREATE VIEW treasures AS
SELECT bag, name, coins
FROM (
SELECT bag, name, coins
FROM treasures_Bl
WHERE treasures_F1
UNION
SELECT bag, name, coins
FROM treasures_B2
WHERE NOT treasures_F1
) AS treasures;
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7.4.2 Cloning and Combining

So far, we focused on the chunk operation of the Armada model. Supporting the
clone and combine operations is less trivial, but conceptually possible. Consider
a clone operation to take place like previously done for the chunk operation.
First the two boxes are created, but unlike the chunk operation, they have the
same function as their predecessor. Hence, a clone of box B; from the example
above results in the two boxes B3 and By:

CREATE TABLE treasures_B3 (

bag int,
name varchar (64),
coins int,

CONSTRAINT treasures_B3 _bag_pkey PRIMARY KEY (bag),
CONSTRAINT treasures_B3 _bag_check
CHECK (treasures_F1 (bag))
);

CREATE TABLE treasures_B4 (

bag int,
name varchar (64),
coins int,

CONSTRAINT treasures_B4_bag _pkey PRIMARY KEY (bag),
CONSTRAINT treasures_B4 _bag_check
CHECK (treasures_F1 (bag))

Next, the treasures view has to be made available. Here it is, unlike at
the chunk operation, not trivial how to express the functionality of the clone
operation in SQL. Where the union of the resulting boxes of the chunk operation
results in the original box, also for the clone operation the union operator yields
in the same behaviour.

Recall that as defined by the SQL:92 standard and up, the UNION operator
eliminates duplicates by default. Hence, the union of two clones results in the
predecessor of the clones. While the functionality of a clone is to provide an al-
ternative during the query execution, the union operator feels quite unnatural.
However, SQL does not have any means to express the OR operation on data
sources, as to pick an alternative. Hence, using the UNION operator, a semantic-
ally correct SQL view can be created:

CREATE VIEW treasures AS
SELECT bag, name, coins
FROM (
SELECT bag, name, coins
FROM (
SELECT bag, name, coins
FROM treasures_B3

WHERE treasures_F1
UNION
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SELECT bag, name, coins
FROM treasures_B4
WHERE treasures_F1
) AS treasures_BIl
WHERE treasures_F1
UNION
SELECT bag, name, coins
FROM treasures_B2
WHERE NOT treasures_F1
) AS treasures;

In this view the execution has to query both clones and union the two (identical)
answers. While this action does defeat the use of the clones, it is correct from a
generic execution point of view. There is room for improvement and optimisa-
tion here, which we discuss in a follow-up paper.

Analogous to the previous discussion, combine operations also use the UNION
operation in SQL. In particular the duplicate eliminating nature of the combine
operation when applied to data overlapping boxes, is very well covered by the
SQL UNION operator. The combine operation does not turn one box in multiple
new ones, but instead merges multiple boxes into one.

Assume we merge box B, and Bj from the previous examples into Bs. This
effectively means a merge of a chunk and a clone of its counter chunk are being
merged. Creation of box Bs includes the logical combination of its predecessor
functions:

CREATE TABLE treasures_B5 (

bag int,
name varchar (64),
coins int,

CONSTRAINT treasures_B5_bag pkey PRIMARY KEY (bag),
CONSTRAINT treasures_B5_bag_check
CHECK ((NOT treasures_F1 (bag))
AND treasures_F1 (bag))
)i

It is not hard to see that the combination of the functions used for the prede-
cessors yields in the whole coverage as for the origin box in this case. It is more
probable that this is not the case, however. Next, the creation of the treasures
view is in contrast to the chunk and clone operations different in that it simply
unions the respective views of the predecessor boxes and substitutes the prede-
cessor boxes with the new box Bs. This action represents the combination made
of the two input boxes:
CREATE VIEW treasures AS
SELECT bag, name, coins
FROM (

SELECT bag, name, coins
FROM treasures_Bl
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WHERE treasures_F1
UNION
SELECT bag, name, coins
FROM treasures_B5
WHERE NOT treasures_F1
) AS treasures
UNION
SELECT bag, name, coins
FROM (
SELECT bag, name, coins
FROM (
SELECT bag, name, coins
FROM treasures_B5
WHERE treasures_F1
UNION
SELECT bag, name, coins
FROM treasures_B4
WHERE treasures_F1
) AS treasures_Bl
WHERE treasures_F1
UNION
SELECT bag, name, coins
FROM treasures_B5
WHERE NOT treasures_F1
) AS treasures;

The resulting view is large and contains some redundancy. However, we do
not optimise the view at this stage. The only action taken here is to rename
the predecessor boxes in the view into the newly created box, as they are now
covered by the new box by definition.

7.4.3 View inlining

With the current technique, once created views are never updated again, lead-
ing to inevitable levels of indirections when trying to resolve them. To avoid
this, a simple and relatively cheap operation can be applied on the views to up-
date their definition by inlining the definition of the view they (partially) point
to.

Consider again the previous example, with on Sy the original treasures
view which is a simple selection on box By. At the time of the chunk operation
applied to By, the new definition for By (as in the newly created view for it)
can be inlined in the treasures view. For this, the reference to By is replaced
with the sub-query for it, resulting in the same view as on S; or S;. In a similar
way, inlining during the chunk operation in the transparency view on S,, results
in one level of indirection less, because it becomes the same as the treasures
view for S3 or S4. In general, the transparency view can be updated to equal
one of the successors, since that view was constructed using the same rules.
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Unless the inlining is done cascading, the effect of this inlining is limited.
Since performing this inline operation for each chunk operation to the origin
site eventually results in a lot of traffic, this is not desirable. Instead, we envis-
age an inlining on demand, taking place during the querying process.

7.4.4 Improvement on the SQL implementation

The drawback of the previously introduced mapping of the Armada model to
SQL, is that for each box, it needs a (physical) table in the database. This re-
quires data to be physically grouped by the chunk function that describes it, and
forces moves of tuples from and to the box tables upon chunking operations. In
particular the copying from and to boxes on the same site is “expensive” because
in principle the data doesn’t physically “move” but needs to match the right box.
In addition it introduces a space requirement (during the copy) which might be
problematic for large boxes, or on machines scarce on resources.

A solution to the drawbacks sketched above, is to detach the actual storage
from the box structure, and have the boxes being represented by a view instead.
This allows to basically store the data in any table, or even multiple tables, as
long as the box can be expressed by a view. It also gives the freedom to construct
boxes from existing data by just defining views for them, instead of having to
create them in an evolving matter. This feature in particular comes in handy
when data from multiple sites is merged into one Armada instance.

The implementation of this solution is done using one table in the armada
schema, named data. Since all data on a site is stored in that one table, there is
now the need to create views that map back to the boxes again. Another table
in the schema is introduced, the table box. This table simply holds the box IDs
and their corresponding constraint as a string. This allows to use complex SQL
functions, or simple conditions as checks in e.g. the WHERE-clause of a SELECT

query.

7.5 Experimentation

Construction of Armada over relational systems stresses their capabilities to
manage ever growing views during cloning, chunking, and combining. To assess
this impact we conducted small experiments against MonetDB and PostgreSQL.
We were unable to test MySQL as it does not support SQL standard syntax.

We can distinguish five different activities and related costs in the SQL ap-
proach taken by Armada.
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table creation For each box, a table is created within the system. Because
original tables get fragmented, extra tables need to be created. This may
be an expensive operation. However, due to the expected frequency and
other operations involved in chunking, of which table creation is a part,
the impact of this cost is low.

data insertion To actually fill up the system, data is inserted in the boxes. Since
this insertion itself is not any different from normal insertion, but that the
site to insert to changes every once in a while, this cost is expected not to
be any different from normal.

data moving On chunk operations, a part of the original box may be moved to
another site. This involves a two-staged “copy and remove” action, with
proper isolation and transportation of the data. This cost is obviously only
involved if there is distribution by means of remote sites.

view creation Like table creation, view creation happens during the chunking
process, and its costs get overshadowed by other operations of the
chunking process. Hence, the impact of this cost is low.

view execution The generated views which cover the complete original tables
become large. Query optimisers and planners may choke on such large
views. Execution may become expensive due to the many tables (boxes)
involved. However, since these views are the main route to query the
system, the importance of the costs associated to them is high.

Query Complexity We conducted a number of experiments on our proposed
SQL implementation of the Armada model. In particular the number of sites
participating in Armada and the number of boxes that are created were taken
as variables. The number of sites participating influences the necessary (total)
communication. The number of boxes stresses the administration, and chal-
lenges its effectiveness.

As the number of sites that are populated by boxes increases, the need to
contact other sites increases on average as well, as seen in Chapter 6. Such
increase obviously comes with additional network costs. However, an increase
of sites not necessary means an increase of communication. If queries target
data that is located on one site, obviously not much communication is necessary.
Moving targets, such as the last events (days) of a log file, typically are in a
growing instance. However, ideally queries after such targets never need to
consult more than one site.
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With numerous boxes, the lineage of new boxes grows. Also, traversal paths
may get very long in case a box has to be searched for. Limitations of the used
SQL engines make it impossible to do any remote activity. Instead, we simulate
everything local to the database, hence only being able to see query complexity
and local execution. It also adds additional requirements as becomes clear later
on.

Local Consistency When boxes get chunked, their contents is moved to other
boxes. Hence, the original box remains empty and should be a pointer to the
new boxes that were created. Conceptually, this is easy, as the chunked box can
be replaced by an SQL view. However, databases that require their views to be
correct, disallow tables that are used in a view to be dropped.

For this, first the view(s) that use the box should be removed. In Armada
this yields in a problem. Ideally, the inactive boxes should just be replaced by
a view, but the database forbids this action to take place. Of course, this only
happens when the database has both the views and the boxes they depend on
local, as only then it is easy to check. Unfortunately, this is always the case,
because the view that describes the whole system, also describes the box that
is chunked. However, if this view, the worldview, gets updated after the chunk
operation, it should only list the offspring of the chunked box. So what remains
pointing to the inactive box, is the worldview of the parent of the chunked box.
Whenever this view is on the same site as the inactive box, the database can
locally check and see that dropping the box breaks the dependency of that view.
Hence, the only way out, is to recreate that view too.

Because this touches the view anyway, it is as expensive to immediately
“inline” the new definition of the inactive box, instead of temporarily dropping
it, replacing the box with a view and recreating it. When the parent is on a
remote site, a view for the inactive box needs to be created, such that the view
on the remote site still points to some object on the local site.

Table Replacement When, simulating an instance of Armada on a local site,
local consistency checks influence how the operations take place. A DBMS
checks the dependencies of objects that are in its catalog. Not only can it check
for each foreign key constraint which table is necessary, but also for views it can
determine which tables are used. An effect of this is that a table that is used
in a view cannot be removed before that view is removed. The same holds for
when a view is to be removed that another view uses.

With Armada, views get created to represent disappeared tables. When a
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box gets inactive, its corresponding table is replaced by a view. To do this, first
the table is removed, then a view put in place. While the end situation in theory
should be fine, the replacement of the table by a view is impossible from the
DBMS’s point of view. This is caused by Armada creating worldviews which are
a view on the whole instance of Armada. As such, each table is part of one or
more worldviews. Removing the table then breaks the dependencies of those
worldviews. Replacement of the table by a view is not possible without the
DBMS noticing in a local situation. If remote sites are referenced, the DBMS
cannot see another site depends on an object, unless back references a main-
tained.

For the local situation, the worldviews that depend on the to be dropped ob-
ject have to be dropped temporarily. Typically, for a given table, all worldviews
that are on the site of the table itself, its sibling and all of its successors have
to be dropped, as they point to the table being replaced. In addition to this, all
views for the tables of the parent trail need to be dropped as they recursively
depend on each other. Remember that a table is replaced with a view to its
successors. When one of the successor tables is replaced with a view, it has the
same problem as with the worldview. However, when the successor has been
replaced by a view, there is a view to view dependency.

This is the case for every box in the parent trail of each table, since every
box in the parent trail is inactive. This means that in order to be able to drop
a view for an inactive box, its parent has to be dropped first, which recursively
goes back to the root of the Armada instance. Hence, each operation in Armada,
when simulated on a single site, is very expensive in terms of view destruction
and creation.

Experiments An instance of Armada is a large collection of views and a few
tables that hold the actual data. Not only are there many views, but also are the
views very large in size, containing many levels of nested queries. In addition,
many views depend on other views in the system. For these reasons, an instance
of Armada is challenging in that it puts quite an unusual load on the DBMS.
We conducted a few experiments on a growing instance of Armada, to meas-
ure the effects of the views on the DBMS. Since we are not interested in the
actual data load, but in the load of the metadata administration, we chose to
use boxes of a small size containing between 5 and 15 tuples. With this size of
the boxes, an instance of Armada grows relatively fast. In Table 7.1 the number
of boxes created per number of tuples, and the inactive boxes is depicted in the
first three columns. Inactive boxes in the SQL simulation are views, that due
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tuples | boxes | inact. M; | My | My | M3 Pi| P | Pb| P
250 37 18 3.50 3 3 3 7.21 1 1 1
500 71 35 13.68 5 5 5 23.29 2 2 2
750 107 53 39.80 8 8 8 67.15 6 3 3

1000 143 71 8468 | 11| 11| 11 142.04 9 4 4
1250 179 89 178.07 | 15| 15| 15 245.24 | 13 4 5
1500 215 107 350.07 | 19| 19| 19 384.32 | 18 5 6
1750 255 127 61458 | 24 | 24 | 24 590.16 | 24 6 7
2000 311 155 || 1131.23 | 31 | 31 | 31 956.27 | 31 8 9
2250 367 183 || 1852.58 | 40 | 40 | 40 || 1490.17 | 40 | 10 | 10
2250 simple 7.73 1 1 1 1.89 1 1 1

Table 7.1: Experimentation details.

to the aforementioned dependencies are recreated over and over again. As a
result the 1000 tuples run contains 5184 view creation statements.

Origin Querying For each site, its worldview addresses every box in an in-
stance of Armada. The difference in worldviews per site is in the amount of
encoded lineage information. Sites with a larger parent trail, have more parent
boxes encoded in their worldview. This is an advantage over sites with smaller
parent trails, such as the root, as they have to “resolve” many boxes through
views that point to views of their successors. For this reason, the origin is the
most expensive cost-wise when querying its worldview. Hence, to get an idea of
the maximum load introduced by the metadata administration of Armada, we
measure query times on the origin site.

Querying a site is done with three different queries. First, a query that
spans all (active) boxes is being run. It consists of a simple count of all tuples
in the instance of Armada. Second, a range select query is performed. This
theoretically allows the DBMS to skip a number of tables. Finally, a point query
is performed. This always spans just one box in our experiment, since the key
is required to be unique.

Table 7.1 lists the loading and query times for MonetDB/SQL 5.0.0_betal
and PostgreSQL 8.0.8. The loading times are given in seconds in the columns
M; and P; for MonetDB and PostgreSQL respectively. The columns My, M,, M3
and P;, P,, P; represent the average of 5 runs, preceded by 2 runs to assure the
data is loaded and ready to be processed by the DBMS. The execution times are
wall-clock times specified in hundreds of seconds.
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Transaction Settings By accident the original loading set we created did not
include transaction boundaries. Hence, the default transaction mode was used
instead. In this mode after every statement a commit is issued. This was causing
very long loading times for MonetDB. To solve this problem, the loading set was
changed to include transaction boundaries, such that the whole load was seen
as one transaction. This allowed us to compare the query results of PostgreSQL
with MonetDB.

Apart from the loading times, which are dominated by view destruction and
creation, the execution times on all of the sizes used in the experiment are far
below a second per query. Yet they can grow up till 40 times the time needed
to query a normal table in the case of a full scan in our largest example.

Even though the SQL statements to produce the instance of Armada do not
contain any check constraints yet, PostgreSQL is able to avoid a full scan in case
of range or point queries that only address one or a few of the tables.

Loading By observing the loading times, we can note that both PostgreSQL
and MonetDB have difficulties with loading larger jobs, in two cases MonetDB
actually crashes under the load. Jobs are generated by specifying a sitesize and
a tuplecount. The former specifies how many tuples fit on a single site, where
the latter specifies how many tuples are inserted in the instance of Armada.
The jobs are a run with sitesize = {10, 50, 100,500, 1000, 5000, 10000, 50000} and
tuplecount = {10,50,100, 500, 1000, 5000, 10000,50000}. Not all combinations
are generated, because of limitations in the generator. The avoided runs are
those where the active box ratio (tuplecount divided by sitesize) is equal to or
exceeds 1000. Note that the active box ratio is for many jobs the same. In such
case the sitesize differs, which allows us to gain some insight on the effect of
different data volumes.

While the loading times were not repeatedly measured, they are wobbly and
must be read as a vague indication only. What we can conclude, however is that
equal ratios take longer to load with more data, as one would expect.

Comparisons The graphs that depict the wall clock times for loading and the
three queries, clearly show that for both MonetDB and PostgreSQL the loading
times dominate over the query execution times by far. This doesn’t come by
a real surprise of course. Two peaks can be noted, for both databases. These
peaks are at tests 10 — 5000 and 100 — 50000, which both have a ratio of 500.
Obviously the amount of data involved makes a difference. For PostgreSQL
this 10 times more data results in an almost 2 times longer loading time, while
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Figure 7.3: Load times.

MonetDB only needs about 10 seconds more, roughly 1/ 6! of the loading time.

If we compare the loading times between the two DBMSs, as in graph 7.3,
we can see that there is not a huge difference between the two. Apart from
the two peaks discussed before, there is one extra peak for 500 — 50000, ratio
100 that does not run within 10 seconds. The tendency here is that MonetDB
is slightly faster, though not necessarily in all cases, such as e.g. 10 — 1000.
However, this might be very well be explained by startup times or similar, since
the loading tests were not run multiple times in a row. Note that MonetDB
crashes during loading for the 10 — 5000 and 100 — 50000 workloads.

Querying Query 1 consists of a count over all tuples in the relation over the
system. This involves a scan over the full relation to count the tuples. The
query and the results can be found in Figure 7.4. PostgreSQL clearly falls be-
hind MonetDB in this phase, which is not surprising given the nature of both
database systems. Note that there are no results for the workloads 10 — 5000
and 100 — 50000 since the loading fails.

The second query does the same count as the first query, but with an addi-
tional range predicate. The predicate is sufficiently small to only address a frac-
tion of the Armada in most cases. The results from Figure 7.5 show a different
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trend compared to the first query. Here PostgreSQL clearly outperforms Mon-
etDB on almost every query. It looks like PostgreSQL is able to recognise only a
limited number of tables is necessary to perform the query, whereas MonetDB
seems to have equal performance as for query 1. This indicates it calculates
the full Armada table, and performs the selection on that table to calculate the
requested count.

The last query is a point query, targeting a single box. MonetDB not only
falls behind PostgreSQL here, but also crashes on the 10 — 500 and 100 — 5000
workloads. Like for query 2, PostgreSQL is able to cut down the query time by
identifying that the query only addresses a single table.

7.6 Limitations

Even though the SQL approach taken here deals with growth and querying, it
is not a generic solution for a number of reasons. First and foremost does the
SQL approach require a remote catalog/query mechanism to be available. As
indicated before, not all databases have this functionality, and the many com-
mercial databases have this available in some way, do not necessarily provide it
in a form that is usable for Armada. PostgreSQL, MySQL, SQLite and MonetDB
do not have said functionality to perform remote queries as of this writing. This
observation makes a true heterogeneous implementation of Armada with the
proposed SQL implementation impossible without a middleware layer to cater
for the missing functionality.

A second issue is updating the data, like performing SQL INSERT, UPDATE and
DELETE statements. The view constructions built by the SQL approach allow in
principle for specific location of where updates should take place, in the same
way as selects over the data can be located. However, updates of this kind over
views is to the best of our knowledge not available. To a very limited extent,
updates on views are possible in most commercial database systems. The typ-
ical functionality here is to allow updates on views that do projections and/or
selection only and updates that only involve one of the tables used in the view.
Since the Armada SQL model does UNIONSs of tables, execution of updates on
those views require some (semantic) knowledge behind the views and their pur-
pose in Armada. Also this could be solved using a middleware approach, but it
would require a full SQL interpreter in the middleware software, including the
Armada logic. Such approach would not require any generic (SQL) approach,
since the middleware translates all functionality to the target database. This
was not the focus of the proposed SQL approach.
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SELECT * FROM SO__armada WHERE key = 105
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Figure 7.6: Query 3.
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workload Ml Ml M, M3 Pl Pl P, P3
10-10 0.37 0.01 0.01 0.01 0.05 0 0 0
10-100 0.22 | 0.0225 0.02 0.02 0.32 0.01 0.01 0.01
10-1000 6.98 0.315 | 0.3375 0.34 5.93 | 0.1475 | 0.0675 0.06
10-50 0.17 | 0.0125 0.01 0.01 0.21 0.01 0.01 0.01
10-500 1.78 0.125 0.135 crash 2.27 0.05 | 0.0325 | 0.0325
10-5000 crash crash crash crash 89.27 | 2.7425 | 0.565 0.53
50-10 0.09 0.01 0.02 0.01 0.64 0 0 0
50-100 0.10 0.01 0.01 0.01 0.37 | 0.005 | 0.005 | 0.0025
50-1000 0.59 | 0.0475 0.05 0.05 1.44 0.03 | 0.0125 | 0.0125
50-50 0.13 0.01 0.01 0.01 0.04 0 | 0.0025 0
50-500 0.28 0.02 | 0.0225 0.02 0.35 0.01 0.01 0.01
50-5000 7.19 | 0.3975 0.405 | 0.4125 7.16 0.51 | 0.0675 0.06
100-10 0.12 0.01 0.01 0.01 0.09 0 0.005 0
100-100 0.10 0.01 0.01 0.01 0.12 0 0 0
100-1000 0.30 | 0.0225 0.025 0.025 0.45 0.02 0.01 0.01
100-10000 8.05 0.5 | 0.5075 | 0.5125 8.40 | 1.4675 | 0.0675 | 0.0625
100-50 0.08 0.01 0.01 0.01 0.14 0 0.005 0
100-500 0.22 0.01 0.01 0.01 0.23 | 0.0525 0.01 0.01
100-5000 2.21 0.17 0.17 crash 3.90 0.255 | 0.0325 0.03
100-50000 || crash crash crash crash || 152.05 | 44.18 0.56 | 0.5375
500-10 0.09 0.01 0.01 0.01 0.97 0 0 0
500-100 0.10 0.01 0.01 0.01 0.19 0 | 0.0025 | 0.0025
500-1000 0.23 0.01 0.01 0.01 0.32 0.01 | 0.0075 | 0.0075
500-10000 1.46 | 0.0825 | 0.0825 | 0.0875 1.86 | 0.3125 | 0.0125 | 0.0125
500-50 0.11 0.01 0.01 0.01 0.09 0 0 0
500-500 0.17 0.01 0.01 0.01 0.08 | 0.0025 | 0.0025 | 0.0025
500-5000 0.72 0.03 0.03 0.03 0.77 0.06 0.01 0.01
500-50000 | 12.04 | 1.4325 1.425 | 1.4225 15.39 9.23 0.07 | 0.0625
1000-10 0.08 0.01 0.01 0.01 0.06 0 | 0.0025 | 0.0025
1000-100 0.10 0.01 0.01 0.01 0.14 0 0 0
1000-1000 0.32 0.01 0.01 0.01 0.38 | 0.0075 | 0.0025 0
1000-10000 1.24 | 0.0425 | 0.045 0.05 1.27 0.17 0.01 0.01
1000-50 0.11 0.01 0.01 0.01 0.12 0 | 0.0025 0
1000-500 0.16 0.01 0.01 0.01 0.07 | 0.0025 0 0
1000-5000 0.78 0.02 0.02 0.02 0.59 | 0.0325 0.01 0.01
1000-50000 6.89 | 0.6925 0.69 | 0.6975 8.71 | 4.4775 0.03 | 0.0325
5000-10 0.11 0.01 0.01 0.01 0.04 0 | 0.0025 0
5000-100 0.13 0.01 0.01 0.01 0.15 0 0 0
5000-1000 0.24 0.01 0.01 0.01 0.10 | 0.0025 | 0.0025 0
5000-10000 1.18 0.01 0.01 0.01 0.86 0.05 0.005 | 0.0075
5000-50 0.09 0.01 0.01 0.01 0.03 0 0.005 0
5000-500 0.17 0.01 0.01 0.01 0.07 0 0 0
5000-5000 0.65 0.01 0.01 0.01 0.43 0.01 0 0
5000-50000 5.12 | 0.1425 0.15 0.15 5.17 | 1.0375 0.01 0.01
10000-10 0.13 0.01 0.01 0.01 0.04 0 0 0
10000-100 0.11 0.01 0.01 0.01 0.05 0 0 0
10000-1000 0.23 0.01 0.01 0.01 0.12 | 0.0025 0 0
10000-10000 1.09 0.01 0.01 0.01 0.82 0.01 | 0.0025 0
10000-50 0.10 0.01 0.01 0.01 0.06 0 0 | 0.0025
10000-500 0.16 0.01 0.01 0.01 0.07 0 0.005 | 0.0025
10000-5000 0.60 0.01 0.01 0.01 0.45 0.01 | 0.0025 0
10000-50000 5.29 0.08 0.08 0.09 4.37 0.54 0.01 0.01
50000-10 0.09 0.01 0.01 0.01 0.17 0 | 0.0025 0
50000-100 0.10 0.01 0.01 0.01 0.04 0| 0.005 0
50000-1000 0.20 0.01 0.01 0.01 0.13 0 | 0.0025 0
50000-10000 1.34 0.01 0.01 0.01 0.87 0.01 0 | 0.0025
50000-50 0.10 0.01 0.01 0.01 0.04 0 | 0.0025 | 0.0025
50000-500 0.27 0.01 0.01 0.01 0.07 0.005 0 | 0.0025
50000-5000 0.62 0.01 0.01 0.01 0.44 0.01 0 | 0.0025
50000-50000 5.12 0.01 0.01 0.01 4.37 0.04 0.005 0

Table 7.2: Extended experiment times.
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Lastly, for operations to be executed somewhat efficiently, and to have
autonomy in the sense that the databases are not depending on each other,
each database must support to have views with “unknown” non-local objects
that can only be checked by contacting a remote site. That check, however
should not be performed for each and every operation, but instead left to the
agent in the system to discover.

A final note on the viability of the SQL approach deals with optimisations
specific to Armada, in particular originating from the knowledge stored. For
queries that just address a particular range that can be matched upon certain
boxes, it is evident that querying all boxes in the Armada is a waste of resources.
To avoid this waste, execution should skip boxes that cannot contain requested
data. For this, the chunk functions need to be used at the execution to skip
contacting remote sites were this is deemed impossible.

Summary

Using the SQL language, we aimed for a straight-forward and relatively non-
intrusive implementation of the Armada model in existing database manage-
ment systems. In particular SQL views are a central concept within the chosen
implementation approach. We demonstrated how the chunk, clone and combine
operations of the Armada model can be mapped onto SQL, and which actions
are required to perform the respective operations.

The distribution aspect of Armada is hidden under the assumption that there
is a notion of “remote tables”. This notion allows a database to retrieve data
from a table which is on a remote site as if it were local to the database. This
functionality is only available in a limited set of traditional databases to date,
to the best of our knowledge. Due to the nature of our implementation, Ar-
mada can be easily simulated on one machine where all boxes are local first.
Whenever remote tables become available, the Armada implementation can
easily switch to using real distribution of the data.

The two database systems that we have experimented with, have shown
that the approach taken puts an unusual load on the systems, sometimes even
resulting in crashes. While the construction of an Armada takes a lot of time,
this can be accepted in general, since it is not a frequently occurring operation.
The query performance instead is important. Compared to a single large table
the fragmented Armada is slower, especially when all boxes in the Armada need
to be consulted. Given that it is more probably that this is not the case, the
results are acceptable in that area. SQL engines can be optimised for a more
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efficient use of large SQL views. Crashes under the load produced by the queries
and views are of course a bad sign that the underlying engine is not able to
handle the size of the queries, which needs to be tackled first.

Loading succeeds using some tricks, and querying works reasonably well.
However, inserting and updating data does not work due to limitations on the
SQL views observed on many SQL implementations. The loading tricks also
affect the matter in which a database can freely evolve, as in extend itself to
others in the cluster. Additionally, the SQL implementation does not allow for
the active client model, but turns each server into a recursive query resolver
itself. This obviously breaks the autonomy as defined by the Armada model.



MonetDB MAL Approach

8.1 Introduction

In previous chapters, the Armada model and a mapping of the model to SQL
statements have been described. As shown there, SQL itself is not powerful
enough to allow an implementation of Armada without having to make modi-
fications to existing systems. Instead of focussing on the SQL layer of a database
system, in this chapter we explore an implementation of the Armada model on
a deeper level towards the core. For this exploration we use MonetDB and its
kernel language MAL. Instead of implementing Armada on a user visible level,
such as in SQL tables, in this approach we make numerous Armadas on an ab-
stract level, hidden from the user. Being on a deeper level, allows for a better
grip on the actions taken in the Armada model, with possible better perform-
ance as result. As entry point we assume the use of SQL, but tables no longer
are Armadas. Instead the underlying representation of the database uses the
Armada model to distribute the components it uses.

Typically, each SQL query is translated into MAL statements within MonetDB
for execution. The units that MonetDB works with, called BATs, are target for
distribution. Each SQL table consists of multiple of such BATs. Figure 8.1 depicts
the architecture that we use in this chapter. Clearly, a user interacts with the
database using plain SQL. Internally, this is converted to MAL code, and the
Armada model is implemented via MAL programs that reference remote sites.
The actual work is performed by the site that the user connected to. It hence
can be considered to be the agent of the system.

SQL catalog In the modular architecture of MonetDB, the SQL compiler refer-
ences BATs via the catalog. To make the SQL compiler unaware of any Armada
activities, catalog entries can be adjusted such that they point to BATs which
represent Armadas.
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Figure 8.1: Ideal architecture of a MAL-based Armada implementation.

This approach keeps the SQL compiler unmodified, and hence is a cheap
solution, focussing on the MAL layer. However, this approach limits the possib-
ilities to communicate with the user about decisions that can be made in the
Armada execution. For user feedback, partial execution is necessary and some
support to have a user decide on how to continue execution. The SQL standard
does not have any means for achieving this, and hence no handles for this are
available. Instead, we focus on full execution without decisions such that we
are compatible with the (unmodified) SQL compiler.

8.2 MonetDB

The MonetDB database system has been an open source product since 2000,
hosted on SourceForge.net. Even though it is open sourced, a clear research
focus is the drive behind the database. This becomes apparent when consider-
ing its very non-traditional design, aimed at non-traditional workloads. Core
of MonetDB is its main-memory processing of data. As this puts restrictions
on when data can be processed efficiently, a full vertically fragmented stor-
age model is in place that allows to only process certain conventional columns,
instead of full rows. The quest for performance on large workloads with Mon-
etDB has resulted in sophisticated in-memory algorithms that are CPU-tuned,
with an accompanying architecture to ensure the CPU needs not to idle, wast-
ing precious time.



CHAPTER 8. MONETDB MAL APPROACH 133

The vertical fragmentation of MonetDB makes it a member of the class of
column-oriented data-stores among [64, 47]. In MonetDB, every relational
table is represented as a collection of Binary Association Tables (BATs). For a
relation R of k attributes, there exist k BATs, each BAT storing the respective
column as a collection of key-attr pairs. The system-generated key identifies
the relational tuple that attribute value attr belongs to, i.e. all attribute val-
ues of a single tuple are assigned the same key. Typically, key values form a
dense ascending sequence representing the position of an attribute value in the
column. This enables MonetDB to use fast positional lookups in a BAT given a
key (such as for tuple reconstruction) and to avoid materialising the key part of
a BAT in many situations completely. BATs are stored as dense tuple sequences,
to enable fast in-memory processing.

The database kernel consists of a large collection of highly tuned algorithms
to evaluate basic binary relational operators. All operators work independently
and produce a fully materialized result. Each operator includes a runtime op-
timiser to exploit storage properties of operands, like sortedness, uniqueness
and data type. Heavy code expansion is used to further reduce the overhead of
interpretation.

MAL The primary textual interface to the MonetDB kernel is a simple,
assembler-like language, called MAL. The language reflects the virtual machine
architecture around the kernel libraries and has been designed for speed of
parsing, ease of analysis and ease of target compilation by query compilers.
The language is not meant as a primary programming or scripting language,
such use is even discouraged.

Furthermore, a MAL program is considered a specification of intended com-
putation and data flow behaviour. It should be understood that its actual evalu-
ation depends on the execution paradigm chosen in the scenario. The program
blocks can both be interpreted as ordered sequences of assembler instructions
or as a representation of a data-flow graph that should be resolved in a data flow
driven manner. The language syntax uses a functional style definition of actions
and mark those that affect the flow explicitly. Flow of control keywords identify
a point to change the interpretation and denote a synchronisation point.

8.2.1 MonetDB/SQL

A user typically uses the SQL language to interact with databases. This language
is in general easier to understand for humans than programming or scripting
languages are. However, being a language geared towards humans, it is not
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sufficient for execution by a machine. Hence, the SQL query is compiled into
the lower level MAL language, that in turn does a step deeper downwards to
machine language.

An SQL query is compiled into MAL statements. For this compilation, lo-
gical table and column properties need to be known, such that can be checked
whether a query is using existing objects, and whether they are of the right
type for what they are used for. This information is typically contained in the
catalog of the SQL database. In MonetDB/SQL the catalog is implemented by a
few system tables that in principle are ordinary SQL tables containing informa-
tion about all objects present in the database. The vertical fragmented nature
of MonetDB has the effect of having at most single column tables. The Mon-
etDB/SQL implementation hides this limitation, by using a BAT for each column
of an SQL table, and keeping the administration of the set of BATs that make up
a single SQL table.

The output produced by an SQL compiler consists of sizeable MAL programs,
mostly comprising binary relational algebra operations. They have already been
optimised using the basic relational rewrite rules, such as selection push-downs
by the SQL compiler. The MAL program also takes care of glueing together the
relational containers with pending inserts, deletes and updates to represent the
latest consistent snapshot. Furthermore, the MAL program is decorated with
all information needed to optimise and execute the query without access to the
SQL catalog. This information takes the form of function calls with all-constant
arguments and properties linked with variables.

Figure 8.2 illustrates the MAL plan produced by the compiler for the query
SELECT count(*) FROM R, S WHERE R.key = S.key AND R.Key < 23.
The query is translated into a cached function, which is called with argument
23. The body of the function is a linear representation of the logical expression.
The first section locates the BATs that represent the two tables R and S. It also
obtains the reference to the pending updates and deletes, which are consolid-
ated in the algebraic section. The major part is the binary relational algebra

plan.

The effective result of the SQL compilation phase is a MAL plan that refer-
ences columns that are necessary to compute the answer to the original SQL
query. The Armada implementation at the MAL level targets individual BATs.
Since the compiled SQL queries address BATs, this is where the Armada comes
in. Obviously, as each Armada in this case is a single column, vertical fragment-
ation is not possible in this scheme.



CHAPTER 8. MONETDB MAL APPROACH

135

function user.s2_0(AO:sht) :void;

_2:bat[:0id, :int]{rows=1:1ng,notnil=true} :
_7:bat[:0id, :int]{rows=0:1ng,notnil=true} :
_10:bat[:0id, :int]{rows=0:1ng,notnil=truel} :
_14:bat[:0id, :0id]{rows=0:1ng} :
_29:bat[:0id, :int]{rows=1:1ng,notnil=true} :
_31:bat[:0id, :int]{rows=0:1ng,notnil=truel} :
_33:bat[:0id, :int]{rows=0:1ng,notnil=truel} :
_36:bat[:0id, :0id]{rows=0:1ng} :
_9 := algebra.kunion(_2,_7);

_12 := algebra.kdifference(_9,_10);

= sql.bind("sys","r","key",0);
sql.bind("sys","r", "key",1);

sql.bind("sys","r", "key",2);

sql.bind_dbat ("sys","r",1);

sql.bind("sys","s", "key",0);
sql.bind("sys","s","key",1);
sql.bind("sys","s","key",2);

sql.bind_dbat("sys","s",1);

_13 := algebra.kunion(_12,_10);

_15 := bat.reverse(_14);

_16 := algebra.kdifference(_13,_15);

_17 := AO;

_18 := calc.int(_17);

_19 := algebra.uselect(_2,nil:int,_18,false,false);

_22 := algebra.uselect(_7,nil:int,_18,false,false);

_23 := algebra.kunion(_19,_22);

_24 := algebra.kdifference(_23,_10);

_25 := algebra.uselect(_10,nil:int,_18,false,false);

_26 := algebra.kunion(_24,_25);

_27 := algebra.kdifference(_26,_15);

_28 := algebra.semijoin(_16,_27);

_32 := algebra.kunion(_29,_31);

_34 := algebra.kdifference(_32,_33);

_35 := algebra.kunion(_34,_33);

_37 := bat.reverse(_36);

_38 := algebra.kdifference(_35,_37);

_39 := bat.reverse(_38);

_40 := algebra.join(_28,_39);

_41 := calc.0id(0@0);

_43 := algebra.markT(_40,_41);

_44 := bat.reverse(_43);

_45 := aggr.count(_44);

sql.exportValue(l,"sys.","count_","int",32,0,6,_45,"");
end s2_0;
Figure 8.2: SELECT count(*) FROM R, S WHERE R.key = S.key AND

R.key < 23.
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function armada.box0(){inline,active}:bat[:0id,:int];
armada.ensureActive ("myhostname","armada.box0");
bO{remote,armada} := remote.get("myhostname","internal_bat_24");
armada.chunk (bO{remote,armada},0,-1);
return bO{remote,armada};

end boxO0;

Figure 8.3: First generation wrapper function.

8.3 Static MAL Armada implementation

MAL code produced by the SQL compiler follows in general a sequence of bind
calls, BAT operations and a final result for the user. The bind calls refer to local
BATs for the SQL compiler that are maintained and kept aligned where neces-
sary. Since these bind calls are just visible in the MAL code, code transformers
can detect and replace these bind calls with Armada specific calls to activate
special use of BATs as part of an Armada. Since this is done by code trans-
formers, the SQL compiler is unaware of this change. This is the starting point
for an Armada at the level of MAL code.

To have Armada working at the MAL level, we need to encode the Armada
model in MAL structures. The MAL language has the notion of function routines
that have one or multiple return values after a call. We can use functions to
represent a box. Normal BATs are not sufficient to represent a box, since in
the Armada model boxes can become inactive, which means such boxes are
redirects to other boxes. BATs cannot have this behaviour, but functions, on
the other hand, can be changed to reflect this state. Assuming that we have an
armada name space, box functions with an unique name can be placed in this
name space. An Armada “BAT” is addressable via its box name only. This means
that a BAT is wrapped by a function stored in the armada name space.

Wrapper Function In Figure 8.3 such function is shown. It contains extra
information that in later stages can be used to steer the process of query execu-
tion. Starting with the declaration of the function, we see two properties, inline
and active. The first property is a hint that the contents of the function can (and
should) be easily inlined in other code which calls the function. Inlining allows
code transformers and optimisers to easily consider the function as a part of the
original code and do changes that go beyond the scope of the inlined function.
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The second property, active, represents the state of the box, whether it is con-
taining data (active) or whether it is just a redirect to other boxes (inactive)
after an operation has been applied. Recall from the Armada model that a box
can only participate in an operation once. Hence, when the box is marked as
inactive, its contents (redirects) never changes.

Assertions The first statement in the function is an assertion statement, that
ensures the function is representing an active box. While this may seem super-
fluous, its use becomes apparent in the light of function caching. A function
that is once read by a remote site may be cached or implicitly cached due to
the inlining property. A box can become inactive, hence so can the function.
This happens when the function is for instance chunked. Caching a function
which represents an active box leads to problems once the box becomes inact-
ive. A site which uses an outdated (cached) version of the function does not
notice that the used BAT is no longer the full dataset, but only a part instead.
Obviously this is very much undesirable, hence it needs to be ensured that the
cached function is legally used in case of an active box. armada.ensureActive
is a no-operation function for the program in the function. When it fails to en-
sure that the given function is active, it forces a reconsideration of the query
(MAL) plan, starting from the last known state where the function which failed
to ensure being active was introduced. We discuss the details of this trap in the
optimiser framework further on in Section 8.3.1.

Remote Retrieval The next line in the function gets a BAT from the remote
site and assigns its copy to b0. The get effectively copies the data from the
remote BAT to the local site and makes it available as b0. The copying can be
delayed to the first moment that b0 is used. Further optimisations regarding
fetching only parts (to avoid doing the entire BAT) are of later concern, at the
stage where we know upfront that we only need a part of the BAT. For now, it
keeps the functionality of the get function limited to making the remote BAT
available. Note that the get call is constructed in such a way that also when the
contents of the function is inlined on another site, the statement still works and
results in the same data. The mechanism should be clever enough to simply
issue a local bind in case the “remote” host is the same as the local host.

Function Encoding To encode the functions that are applied to the boxes, as
defined in the Armada model, special meta-statements are necessary. Since a
box does not contain any more data than their function describes, additional
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selections over the boxes that match the function are a waste of efforts. The
adding such select statement in the function technically allows for optimisers
to detect the selection boundaries and take them into account, such ordinary
select statements are hard to distinguish from those statements that are really
necessary to perform. To avoid this potential performance pitfall, we use meta-
statements for this that describe what data can possibly be in a given BAT. The
armada.chunk statement does this for BAT b0 in the above MAL function. It
describes a range chunk function and specifies what (numeric) range is being
used.

Returning Finally, b0 is being returned to the caller. Note that b0 carries
the properties remote and armada. The first marks the BAT as being a copy of a
remote BAT somewhere. The second marks the BAT being a result of and owned
by Armada. Both properties can be used later in the process to treat the BAT
properly on optimisations and operations.

8.3.1 Use of Optimiser Plan Stacks

The MonetDB distribution comes with a large collection of optimiser modules.
They are developed up to the point that they could be used to experiment with
the optimiser software infrastructure. They are highly targeted at a particular
problem. Table 8.1 shows the modules forming the optimiser pipeline for SQL
plans.

The MAL language does not imply a specific optimiser to be used. Instead,
calls to specific optimiser routines is part of the MAL program produced by the
front-end compiler. They are, however, evaluated during the optimiser phase
only.

Plan Stacks Optimisers have the freedom to change the code, provided it is
known that the plan derived is invariant to changes in the environment. In par-
ticular, an optimiser may leave behind calls to other optimiser routines. When
all optimiser calls have been dealt with, the query plan is cached and ready for
execution. The alternative plans are collected as a stack of MAL program blocks.
The plan stack can be inspected for a posterior analysis of optimiser behaviour.
Alternatively, the stack may be pruned and re-optimised when appropriate from
changes in the environment. An example of such change is whether a BAT is
empty or not. Big parts of the code may be disabled and removed if an input
BAT is empty, however, if the BAT becomes non empty later on when reusing the
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inline inlines functions identified as such

remap locates hardwired multiplex operations
costModel inspects the SQL catalog for size information
coercions performs static coercions

emptySet removes all empty set expressions

access modes ensures that BATs for update are writeable
aliases removes alias assignments

common terms searches for common terms and retains one only
accumulators re-uses BATSs to hold the result of an expression
joinPath searches multiple joins and glues them together
deadcode removes all code not leading to used results
reduce reduces the stack space for faster calls
garbageCollector injects calls to free up space

multiplex translates multiplex operations to iterators

Table 8.1: The MonetDB/SQL optimiser pipeline.

same (optimised) plan, a re-evaluation of the original plan is necessary, since it
obviously is not valid any more. Re-evaluation may, however, not always have to
be done completely from scratch. It may only be necessary to re-evaluate from a
given point in the stack. This is typically the case for the armada.ensureActive
function. In case the check fails, a re-evaluation has to be made starting from
the point where the statement was introduced. For the Armada case, this is the
point where the remote function was inlined in the query plan.

Labels When the armada.ensureActive statement is inlined, its invocation is
changed to refer to the plan right before the inline operation. This allows the
operation to jump back to the right plan in the stack to start re-evaluating. For
this to work, each plan in the stack is labelled. MAL properties control whether
a reference to a label should be made or whether the statement has to be kept
as is. The transformer that sets the label for the ensureActive statement looks
for the properties func and label. If one or both are missing or the value of
func is not equal to the current function name, the statement is considered
to be new. In this case the func property is set to the name of the current
MAL function. The label property is set to the label of the current plan in
the stack, that is the label of the last known plan. This is not the plan that is
currently being generated by the transformer. Using this scheme the jump point
for the ensureActive statement is being set once it is introduced or inlined into
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sql oranges => columns "id" is t_id, "name" is t_name, "value" is t_value
bat t_id => "december" on "amalia"

bat t_name => "june" on "alexia"

bat t_value => "april" on "ariane"

Figure 8.4: The catalog state.

another plan. This results in the desired behaviour where a jump is being made
to the right label and an optimiser is able to simply determine whether the jump
label has to be set or not.

8.3.2 Analysis Use Case

Using the previously described techniques to manipulate functions on the MAL
level, we can build an Armada system as follows. For this example we assume
that the catalog contains information about an SQL table “oranges”, having
three columns, “id”, “name” and “value”. Each of the three columns are mapped
to a named Armada BAT, “december” on host “amalia”, “june” on host “alexia”
and “april” on host “ariane” respectively. Figure 8.4 schematically represents
this catalog.

The state of the catalog specifies that there exist three sites that have an
Armada BAT. Those BATs are initially set up on their sites, and made access-
ible by a wrapper function. The wrapper functions are like Figure 8.3, but for
“december” on “amalia”, a chunk operation was applied. The three transitions
the function “december” made are depicted in Figure 8.5.

In our example we only consider the last state of the “december” function
to be used. In other words our example runs only after “december” has been
chunked. As can be seen in Figure 8.5, “december” has become an inactive box,
marked by the absence of the “active” property. Any following changes do not
affect the box being active or not, following the Armada model. The definition
of the newly used boxes, such as “january” on host “maxima” has been inlined
in the “december” function, including the guarding assertion to make sure no
out of date definition of the function is used. The armada.chunk operations
indicate how the chunk was performed using a range function. The guards may
cause the function to be re-evaluated starting from the second function. As can
be seen, the armada.ensureActive call for the “december” function itself is
dropped in the second function, as it is no longer necessary to ensure that the
box is active. The box is inactive, which means its actual contents is not going
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function amalia.december{inline,remote,active}():bat[:0id, :int];

armada.ensureActive("amalia.december");
bl := remote.bind("amalia","b7");
ret := armada.chunk(b1,0,-1);
return ret;
end december;

function amalia.december{inline,remote}():bat[:0id,

bl := amalia.regina();
b2 := maxima.january();
return ret := algebra.sunion(bl,b2);

end december;
armada.resolve("amalia.regina") ;
armada.resolve("maxima.january");

function amalia.december{inline,remote}():bat[:0id,
armada.ensureActive("amalia.regina");
bl := remote.bind("amalia","b7");
b3 := armada.chunk(b1,0,20);
armada.ensureActive ("maxima. january") ;

b2 := remote.bind("maxima","b32");
b4 := armada.chunk(b2,20,-1);
return ret := algebra.sunion(b3,b4);

end december;

Figure 8.5: Transitions for the function “december” on host “amalia”.
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function user.s1_0():void;

_8:bat[:0id,:int] := armada.bind("t_id");
_15:bat[:0id, :str] := armada.bind("t_name");
_18:bat[:0id, :int] := armada.bind("t_value");

_11 := algebra.markT(_8,0@0);
_12 := bat.reverse(_11);

_13 := algebra.join(_12,_8);

_16 := algebra.join(_12,_15);
_19 := algebra.join(_12,_18);
_20 := sql.resultSet(3,1,_13);

sql.rsColumn(_20, "armada.oranges","id","int",32,0,_13);
sql.rsColumn(_20, "armada.oranges", "name","varchar",24,0,_16);
sql.rsColumn(_20, "armada.oranges","value","int",32,0,_19);
sql.exportResult(_20,"");

end s1_0;
armada.resolve("user.s1_0");

Figure 8.6: Simplified initial SQL query plan for SELECT * FROM oranges.

to become wrong, at most out of date. Hence, the function can be freely copied
and cached. Of course the newly added guards in the third function make the
function body itself potentially incorrect again. This is due to the contents of
the referenced functions being inlined.

Query Execution In the described setting, an agent called “trix” executes the
SQL query SELECT * FROM oranges. This query translates to MAL code as in
Figure 8.6. The figure shows simplified code, leaving out the delta administra-
tion for inserts and deletes. Also, some optimisers have been run. Normally
also the empty set optimiser runs, but in this example it has been disabled,
for it would remove empty results, thereby making it harder to see what the
code is doing. The code in the figure essentially just binds to the columns and
prepares them to be aligned before being added to a final result where addi-
tional metadata is stored. At the bottom of the code an armada.resolve call
is found. It processes the armada.bind calls that are inserted as a replacement
of sql.bind calls. This processing either results in the call being replaced by a
simple sql.bind call for non-Armada BATSs, or the (remote) function that maps
the requested Armada BAT.

Figure 8.7 depicts the situation after resolving the armada.bind calls. In
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function user.s1_0():void;

_8:bat[:0id, :int] := amalia.december();
_15:bat[:0id, :str] := alexia.june();
_18:bat[:0id, :int] := ariane.april();

_11 := algebra.markT(_8,000);
_12 := bat.reverse(_11);

_13 := algebra.join(_12,_8);

_16 := algebra.join(_12,_15);
_19 := algebra.join(_12,_18);
_20 := sql.resultSet(3,1,_13);

sql.rsColumn(_20, "armada.oranges","id","int",32,0,_13);
sql.rsColumn(_20, "armada.oranges", "name","varchar",24,0,_16);
sql.rsColumn(_20, "armada.oranges","value","int",32,0,_19);
sql.exportResult(_20,"");

end s1_0;
optimizer.inliner("user.s1_0");

Figure 8.7: Resolved query from Figure 8.6.

our case, all binds are replaced with calls to our previously defined Armada BAT
functions. Not surprisingly, these calls can be inlined to further expand the plan,
like we did in Figure 8.5. Eventually, after all code has been expanded, the final
plan becomes as in Figure 8.8. In that plan, in total three armada.ensureActive
statements are present. These statements are potentially invalidating the plan.
More importantly, they need to be checked during execution, which requires
(network) communication with the involved site. This obviously is an inevitable
pity, since it adds extra network costs. When the plan is being constructed, the
site is contacted for the first time. Then before the data is being requested, it
is checked whether the plan is up-to-date by checking with the site. Finally,
the site is contacted for the last time to retrieve the data. In case any up-to-
date check fails, even more communication costs are involved. Obviously, it is
desirable to reduce the number of communications with sites.

8.4 Stepwise Dynamic Inlining

While the before described approach is clear for analysis of queries to be per-
formed on an Armada, it imposes a different agent strategy than the Armada
model proposes. In terms of agent communications with remote servers the Ar-
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function user.s1_0():void;

armada.ensureActive("amalia.regina");
_1 := remote.bind("amalia","b7");
_2 := armada.chunk(_1,0,20);
armada.ensureActive ("maxima. january") ;
_3 := remote.bind("maxima","b32");
_4 := armada.chunk(_3,20,-1);
_8:bat[:0id,:int] := algebra.sunion(_2,_4);
armada.ensureActive("alexia.june");

_14 := remote.bind("alexia","b26");

_15:bat[:0id, :str] := armada.chunk(_14,0,nil:str);
armada.ensureActive("ariane.april");
_17 := remote.bind("ariane","b10");

_18:bat[:0id, :int] := armada.chunk(_17,0,-1);

_11 := algebra.markT(_8,0@0);

_12 := bat.reverse(_11);

_13 := algebra.join(_12,_8);

_16 := algebra.join(_12,_15);

_19 := algebra.join(_12,_18);

_20 := sql.resultSet(3,1,_13);

sql.rsColumn(_20, "armada.oranges","id","int",32,0,_13);
sql.rsColumn(_20, "armada.oranges", "name","varchar",24,0,_16);
sql.rsColumn(_20, "armada.oranges","value","int",32,0,_19);
sql.exportResult(_20,"");

end s1_0;

Figure 8.8: Final expanded query plan.
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mada agent is more efficient, and also efficiency through caching is significantly
easier. The key of an Armada agent is that it detects an outdated box when it
asks it for its data. Not only does this mean no total plan is generated before
execution, but also that an agent has no notion of whether a box is active or
inactive. When an agent requests a box for its data, it simply receives this data,
or a redirection where to find this data. The agent simply refines its plan at
runtime with this received redirect. Based on this property, another approach
was devised that inhibits this plan refinement at runtime behaviour.

Dynamic environments require dynamic execution models to be efficient.
Stepwise dynamic inlining is a query execution strategy where the query plan
is incrementally built during query execution. It can be seen as a refinement
of the query plan that is made during execution. The plan is seen as just an
approximation or as out of date.

Incremental Optimisations The architecture imposed by the Armada model
requires an agent to be an active player during query execution. Not only does
this mean the agent is doing a lot of work, but also that this work implies
communication with the servers involved. Optimisations in this area are in-
dispensable to reduce expensive network calls. However, optimisations cannot
be made without a plan for all actions to take. This yields in a contradicting
situation where on the one hand the full plan needs to be expanded and on the
other hand the costs of unnecessarily expanding the plan needs to be avoided.
A conventional approach to query execution requires a full plan to be made
before the actual execution starts, such that optimisations aimed at the full ex-
ecution can be made. In the case of Armada, the tree-shaped lineage tree offers
the opportunity to minimise the granularity of the plan gradually as the agent
executes it. With the agent contacting servers to ask for the data, every time
it receives a query plan back, it can update its query plan and do incremental
optimisations during the execution phase.

Figure 8.9 depicts the architecture of the approach taken to obtain stepwise
dynamic inlining. The behaviour of the Armada agent to possibly change its
query plan during execution suggests it has to rewrite the currently running
code. While in Armada this means that one instruction is replaced by a number
of others (inlining) at runtime it imposes a serious administration burden to
do so. Many references from and to values placed on the stack may need to
be shifted in the current context. While an implementation like that has many
potentials to cause random crashes in the implementation of MAL which was
not designed to support this, a multi-staged solution was used as shown in the
figure.
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b := stubl();
io.print (b);

P

Agent

-» function stubl () :bat;

3 function stub2() :bat;

‘T "~ "~ return r;

+ function stubl () :bat;
r := remote.exec("bl");
catch RedirectException re;
r := armada.rewrite(re);

exit re;

end stubl;

1 := stub? (); s ———— he
r := stub3(); e — e
b := algebra.sunion(l, r);
return b;

end stubl;

r := remote.exec("b2");
catch RedirectException re;
r := armada.rewrite(re);
exit rej;
return r;
end stub2;

end stub3;

r function bl () :bat;

r := bbp.bind("b");
—{=--=-return r;

end bl;

(b2, b3) — chunk(b1)

A4

r function bl () :bat;

e := armada.redirect (b2,
-r--—raise e;

end bl;

b3);

r function b2 () :bat;
r := bbp.bind("b");
return r;

end b2;

r function b3 () :bat;
r := bbp.bind("b");
return r;

end b3;

Figure 8.9: Stepwise Dynamic Inlining in action.

Server A

Server B
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Like in the analytic approach, the query of an agent is transformed such that
requests for data in an Armada are made available in the plan. In the dynamic
approach stub functions are used instead of armada.bind calls. The purpose
of the stub functions is to implement dealing with redirects encountered at
runtime. The function stubl tries to execute a function on the remote site
to obtain the data. It is prepared to receive an exception which like a redirect
contains enough information to create two new stub functions stub2 and stub3
and to redefine function stubl as a union of the result of the two new stub
functions. After the rewrite the new function is called, which may iterate the
same process again to obtain the data.

Dynamic Rewriting Going back to the abstract level of Figure 8.9, a box on
a server is represented by a function that initially returns the data in the box
as a BAT. The function remains at the server and is not meant to be shipped to
any other site, or its implementation to become visible to others. This charac-
teristic forces an agent to call the (remote) function when it wants to obtain the
data from the box. Whether or not such call is cached as query plan, the real
data being retrieved is always correct, as in, not out-of-date. When the box is
chunked, its function is replaced by one that raises an exception which includes
redirect information. An agent calling the function to retrieve the data’s box,
then receives the raised exception which allows to handle the redirection in the
query execution.

From the agent’s perspective the redirection exception raised by the remote
function initiates a procedure to follow the redirection in the query. Since this
situation occurs at run-time, a workaround to avoid rewriting the currently ex-
ecuting query plan is made through use of the aforementioned stub functions.
Internally, when a new function is called, a new execution environment is used.
For this reason, the soon to execute function can be created or modified just
before execution. Also, functions can be overwritten, thereby “changing” the
definition of the function for the next caller of that function. These ingredi-
ents are used by armada.rewrite to effectuate the redirect received from the
server. First it creates two new stub-functions for the new boxes received via
the redirect. These stub-functions are created by a template which simply tries
to retrieve the box’ data as BAT, or handles the redirection exception. Because
those stub-functions are specific for a given box, the location (not shown in the
figure) and name of the function to call are hardcoded in the stub-functions.
Stub-functions cannot be reused, since they are overwritten when a redirect is
encountered. Hence, hardcoding the remote function information in the stub
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Q
stub 4
L stub 2 stub 6
‘ stub 1 stub 5
stub 3 stub 7

Figure 8.10: A trail of stub functions.

is not limiting in any way from a code and architecture point of view. Finally,
armada.rewrite overwrites the function it was called from with a simple func-
tion which calls the two new stub-functions and returns the union of both BATs.
Since execution of the original function where armada.rewrite was called is
not affected, armada.rewrite calls the new function which overwrites the old
stub and returns that result to the original stub-function, which is written in
such a way that the data is finally delivered to the user’s program. Note that the
original stub-function stubl is created as part of the particular Armada initial-
isation on the system. It is part of the Armada catalog that enables availability
of Armada BATs in the database system.

8.4.1 Caching

With stepwise dynamic inlining, each remotely known BAT from an Armada has
a corresponding stub function on the agent. The stub functions are a necessity,
but have a side effect of generating a cache on the agent. Each following use
of stubl benefits from the already previously retrieved stub functions, as local
access is cheaper and faster than constructing new stub functions from a remote
redirect.

As the Armada grows, the agent has to store more stub functions. As a result,
for each query the entire stub function tree has to be traversed. While still
being local, these eventually long chains cause a lot of function call overhead.
In addition, each query performed, has to execute the same path again, since
they start at stubl. Figure 8.10 depicts such a trail of stub functions. Not
surprisingly, such trail carefully follows the lineage trails of boxes. As such
the same conditions of active and inactive stub functions hold. This means that
stub-functions rewritten by armada.rewrite are not going to change and hence
are eligible for inlining.
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begin stubl() :bat;

1= stub6();

1= stub7();

:= algebra.sunion(_7, _8);
1= stubd();

-9;

:= algebra.sunion(_4, _5);
= _6;

1= stub3();

:= algebra.sunion(_1, _2);
return _3;

end stubl;

W NP OO © 0N
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Figure 8.11: A fully inlined stub1 function.

Inlining Stubs Inlining the stub functions has the largest benefit when this is
done in stubi, since each query using it then immediately accesses the fully
inlined plan. Figure 8.11 depicts an inlined version of stubl in the situation
depicted by Figure 8.10. Here, all possible stub functions are inlined. The
resulting plan is flattened with the only functions not inlined, those stubs that
represent active boxes, and hence may change in the future. Note that the in-
lining process has inlined the stubs in chronological order. As such originally
stub2 was assigned to variable _1. Further optimisations can reduce the size
of the code by removing assignments such as _1 := _6; by propagating them
through the code. This is commonly referred to as alias removal. The inlined
plan in this state can be cached and reused for subsequent queries on the Ar-
mada BAT. Important detail here is that the inlining and optimisations are done
on stubl, and not in the program that calls stub1. This is quite uncommon, but
is the only way in which subsequent queries benefit from the work previously
done. The contents of stubl may not be inlined into the calling program, since
that would complicate matters in case one of the stub functions appears to be
out of date.

Having rewritten stub functions being inlined in the top-level stub func-
tion, allows for generic optimisations to be applied only once, instead of for
each query that uses the stub. Since active stub functions are not inlined,
armada.rewrite which operates on those stubs, does not have to change the
way in which it rewrites the stub functions. As a stub function gets rewrit-
ten, it effectively gets replaced without taking the original contents into ac-
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bbp.bind("some_bat") ;
b := bbp.bind("another_bat");
p := bat.select(a, 10, 20);
q := bat.select(b, 40, 60);
t := algebra.join(p, q);

Figure 8.12: Example selection code.

count. This is no problem as long as the stub functions are not changed before
armada.rewrite operates. The result of a rewritten stub-function can of course
be inlined as well. For instance when stub6 from Figure 8.10 gets rewritten,
upon a next query it may get inlined into the stubl function. This scheme
effectuates a self-reorganisation after a dynamic query refinement.

8.4.2 Volume Optimisation

In a distributed setting, optimisations on network costs always play a promin-
ent role. In Armada, two different kinds of optimisation can be made in this
respect. First, avoiding a call to a stub function yields in a full reduction of
network communication. As side effect, it also avoids code expansion costs due
to dynamic rewriting. Second, the data being retrieved can be minimised by
pushing selections down into the remote server that holds the data. While this
takes extra communication to retrieve only the selection, it potentially pays off
against the number of data tuples that do not have to be shipped between the
sites. For both optimisations it is necessary to have the Armada functions from
the model. Without them, no information on what data is contained where is
available, and hence no box can be assumed not to have the data. Encoding
the functions in MAL can be done by assigning properties to the BATs returned
by the stub functions. Properties are from a human code consumption point of
view natural elements to tag objects with certain characteristics. Also for op-
timisers, for example minimum and maximum values as properties of a BAT are
easy to consume and process.
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tmpl{pmin=0,pmax=50} := stub2();

tmp2{pmin=50} := stub3();

tmp3{pmin=0} := algebra.sunion(tmpl{pmin=0,pmax=50}, tmp2{pmin=50});
b{pmin=5,pmax=20} := bat.select(tmp3{pmin=0}, 5, 20);

io.print (b{pmin=5, pmax=20}) ;

Figure 8.13: An Armada chunk stub function using properties.

Code Optimisation Consider the example in Figure 8.12. There are no prop-
erties in the code, but it is not hard to imagine that a and b have undefined
minimum and maximum values, whereas p and q have limits between 10, 20
and 40, 60, respectively. The final join is guaranteed to have an empty result, as
p and q cannot have any tuples in common. End result is that the bbp.bind calls
can be removed from the plan, thereby reducing actual work to do. Existing op-
timisers are already able to effectuate this, based on the previously mentioned
code analysis. Reflecting this on the stub functions, inserting select calls on the
result of the remote.exec calls would allow for the same optimisation without
introducing an Armada specific optimiser. This contrasts the armada.chunk
function used in the statical analysis approach.

Consider Figure 8.13 which depicts a selection made over a typical union of
two stub functions. The figure shows the use of properties for the BATs in use.
The possible minimum (pmin) and maximum (pmax) properties for the results
of the stub functions are part of the stub function’s definitions. Function stub2
covers a range from 0 till (not including) 50. Since stub3 has no upper limit on
its range, only the minimum possible value (50) is encoded as property. In the
generality of the property management, analysis of the property sets upon oper-
ations result in properties on return values. In the case of the algebra.sunion
a “union” of both BATs theirs pmin and pmax properties results in the range of 0
till infinity. Of course the result of a bat.select call results in a BAT with pmin
and pmax equalling the selection criteria. With all these properties available,
a few conclusions can be made, when looking at the code from the bottom to
the top. The selection on tmp3 can possibly result in something, since the input
BAT possibly holds data in the selection range. If this were not the case the
bat.select statement could be replaced by an empty set. Such operation can
yield in more statements becoming void, which are removed by the empty set
optimiser.

Another optimisation based on the previous example is to reduce the size
of the sub-results, in particular because they need to be fetched from a remote
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tmpl{pmin=0,pmax=50} := stub2();

tmp4{pmin=5,pmax=20} := bat.select(tmpl{pmin=0,pmax=50}, 5, 20);
tmp2{pmin=50} := stub3();

tmp5{rows=0} := bat.select(tmpl{pmin=50}, 5, 20);

tmp3{pmin=5,pmax=20} := algebra.sunion(tmp4{pmin=5,pmax=20}, tmp5{rows=0});
io.print (tmp3{pmin=5, pmax=20}) ;

Figure 8.14: Selection push-down applied on the example of Figure 8.13.

site. In Figure 8.14 the selection is pushed through the union operation such
that the selection is done right after the stub functions over tmp1 and tmp2. Due
to the properties, it can be seen that the selection over tmp2 is going to be empty,
resulting in an empty set, indicated by the property rows=0 on BAT tmp5. An
effect of this knowledge to the empty set optimiser is that the union operation
is now useless, and the entire operation can be skipped, with the result being
just tmp4. The bat.select on tmpl can be removed as part of this, since the
operation does not have any effect. In turn, the dead code optimiser detects that
the stub3 function call is needless, as its result is never used. This finally leads
to avoidance of any network communication performed by function stub3.

Runtime Optimisation The set of regular optimisers work fine here on the
inlined code, as shown before. An important problem, however, is that the
stubl code cannot be inlined as we concluded before. Newly rewritten func-
tions would not benefit from the optimisations, and optimisations applied to ex-
isting code possibly breaks for other queries. Regarless, selection optimisation
as done above has the desirable effect of reducing network communication. Not
inlining stubl makes the stub function a black box to the optimiser. Nothing
can be done to it, the same situation that characterises a just rewritten stub-
function, and selection optimisation therein. Temporarily inlining only works
for the stub-functions representing an inactive box, the active ones can get re-
written at runtime. Still, it means a temporary copy is made which is modified
for the query at hand. Since the dynamic nature of the Armada query strategy
forces a runtime based strategy, static (analytic) optimisers per definition fail to
meet the requirements. Instead of them, runtime guards to avoid unnecessary
work can provide generic avoidance of expensive network calls, at the expense
of slightly higher execution costs. To do these runtime checks, more inform-
ation is necessary at runtime in the stub functions. Starting with the user’s
original query again, we can use optimisers and static analysis to find if there
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stub1(0, 10);
:= algebra.select(b, 0, 10);
io.print(c);

o o
]

Figure 8.15: Optimisers can “push” the selection criteria through the stub func-
tions.

is a selection made on the BAT retrieved by the stub function being called. This
selection range then can be made an argument to the stub function call, such
as in Figure 8.15.

The low and high values of the selection range are put as arguments of
the stub1 function, making the selection operation on b unnecessary. It is left
here in the figure for explanation purposes. When no selection is made or its
range cannot be determined, the default low and high values of nil are filled in
which denote an unlimited range. A range for example cannot be determined
when the selection is done using variables filled in at runtime. Though to a
certain extent, also these variables can in some cases be used as arguments
for the stub function. In some cases execution order may be changed such
that the selection value is known in time for the stub function at runtime, but
this may be too complicated to derive, or simply impossible. With the possible
selection criteria the stub function can now use this information to possibly skip
consulting remote servers that do not have the requested data. Instead of using
properties that aid in statical analysis of the plans, the data coverage of the stub
functions is now encoded in the code by means of the guards.

In Figure 8.16, a quick exit is encoded in a stub function to avoid performing
the remote function call to retrieve the data. To not to disturb the calling code,
an empty BAT is returned otherwise. Upon rewrite of the stub-function, the
guards can be placed in the rewritten function as well, such as depicted in
Figure 8.17.

With this code, it is no longer necessary to have any guards in the active stub
functions, since they are not called when they cannot produce data matching
the selection criteria. Note, however, that the selection range is now also given
as argument to the remote. exec call. This allows the remote site to only return
what is necessary for the selection. This is a further reduction of network traffic
that comes for free now the selection range is pushed through all stub functions
being called. New stub functions generated by the armada.rewrite call hence
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function stubl(low:int, high:int) :bat;

barrier e := low > 10 || high < 0;
r := bat.empty();
return r;
exit e;
try;
r := remote.exec("bl", low, high);
catch RedirectException re;
r := armada.rewrite(re);
exit re;
return r;
end stubil;

Figure 8.16: Runtime guards in active stub functions.

function stubl(low, high):bat;
barrier e := low > 10 || high < 0;
1b := bat.empty();
opposite e;
1b := stub2(low, high);
exit e;
barrier e := high < 10;
rb := bat.empty();
opposite e;
rb := stub3(low, high);
exit e;
b := algebra.sunion(lb, rb);
return(b) ;
end stubil;

Figure 8.17: Guards placed in an inactive stub function.
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include low and high arguments and the respective guards. The low and high
arguments are passed on to the remote.exec call. Because stubl is generated
by the Armada initial ritual, it can contain the guards as shown before, such
that calls to stubl in user code need no transformation to add the guards. This
means that analytic compilers can do their job on the user’s code up to the point
where they know what the selection criteria are for the stubl function. From
there the execution dynamically deals with the optimisations at runtime.

Summary

An Armada implementation requires more functionality from a generic database
engine, than it can deliver via the SQL layer. To overcome this functionality
shortage, we chose MAL, the algebraic MonetDB Assembler Language, as target
for our next exploration of an Armada implementation.

Our implementation focusses on the columns present in the database, and
by means of wrapper functions for those columns, Armada boxes are simulated.
Since the functions can be changed, an operation is administered in such func-
tion by changing its code, and creating new functions representing the new
boxes. The lineage in these functions is encoded by the call to other functions,
and available to others by copying the functions.

We put some attention to optimisations in the query execution over an Ar-
mada. Compile time variants of MAL plans are able to reduce a lot of work,
but they are hampered by the execution phase which can find a situation not
accounted for. Instead, runtime variants are necessary to limit the communica-
tion with other sites to a minimum, by requiring only a single call to either get
an answer or redirect.

Caching the MAL functions received from other sites allow to speed up the
process by requiring less communication with other sites. Many optimisation
efforts can be performed on the cached plans, resulting in a high benefit due to
reuse.

With the final proposed implementation on the MAL language, we have
shown that it is possible to implement an Armada agent conforming to the
model. This implementation respects the autonomy of the involved sites, sup-
ports the decentralisation, and hence does not block the evolution of the cluster.






Conclusions and Future Work

9.1 Contributions

As the introduction of this thesis mentions, trends in computing change. Driven
by requirements, ideals and most of all humans, our creation changes, and will
change many times in the future. This thesis builds upon a trend that puts focus
on the distribution of tasks over multiple machines. Scaling of performance is
no longer seen as a viable option for a single, large machine. Instead, each
partial machine that the entire system is made of, adds its own share to the
performance of the system.

Also database management systems have been following this trend. For
them, data growth and the processing thereof are simply growing out of bounds
of a single system. However, as growth in terms of data and usage continues, the
number of systems grows as well, causing an inevitable administration hurdle.
To overcome this hurdle, a system has to manage itself to a large extent, allevi-
ating the database administrators. This thesis deals with the autonomy implied
by this self management in a distributed setting, which is expected to evolve
where necessary.

The aim of this thesis is to be an exploration of autonomy, decentralisation
and evolution in the context of database systems. Previous research in these
three areas is mainly focused on decentralisation with autonomy as side-effect.
In particular P2P systems which are primarily decentralised have been given a
lot of attention. Autonomy is considered to go hand in hand with decentralisa-
tion, since a central controlling component is absent in decentralised systems.
However, the amount of autonomy given to the participants of distributed sys-
tems is limited. Evolution has mainly been approached from a system internal
angle.

The contribution of Armada extends autonomy to the level where parti-
cipants are initiators in the system. Through this initiative, evolution of the



158 9.2. RESEARCH QUESTIONS

entire system is achieved. Evolution, here, is not just an internal matter, but at
the level of the global system, and can be seen as self-managing behaviour. The
proposed Armada model decentralises by storing partial catalog information
throughout the entire system.

The autonomy of the system enforces clients to play an active role in query
resolution. This gives the client an unusual task, for the benefit of having the
user controlling the query process. This is in particular useful using the incre-
mental query evaluation that is a result of the Armada lineage tree. There are
natural points where the query can be stopped or suspended, since data is di-
vided in blocks. These blocks are defined by arbitrary functions, allowing full
control over the characteristics of the data in a block.

9.2 Research Questions

In our exploration towards autonomy, decentralisation and evolution of database
systems, we were lead by a general research question, consisting of four more
specific questions. We first answer the four questions, followed by the answer
to the general question.

9.2.1 In what way can we distribute data in a dynamically
evolving system using site local decisions and avoid
global site control?

The Armada model from Chapter 3 describes how data can be spread over
multiple sites starting from a single one. Growth in this model is achieved
by performing operations which involve sites being added to the system. The
operations are performed by the local site that was triggered to do so by e.g. a
resource limitation. Such site is an initiator to resolve a local problem, on its
own. Other sites in the system need not to express agreement, or be informed
of the performed operation. Obviously, this means only those sites which are
not directly involved in the operation. This independence of sites for their local
decisions is due to the trail administration of the Armada model. The trails
store pointers to other sites, that may or may not be up-to-date. Upon creation,
history information is inherited from the local site, allowing each site to refer
back to predecessors. Since the pointers may not be up-to-date, when following
them it has to be accommodated for that they are out of date. This leads to
locally performed operations to become visible when they are referenced. Since
operations always redefine where data is that used to be on the original site,
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and hence when following the trails, one never suddenly ends up in the wrong
place.

The lineage trails of the Armada model are a way to administrate the where-
abouts of data, without a central catalog scheme. Dynamically evolving systems
benefit from this scheme, since they can expand when and where necessary
without being hampered by costs of e.g. global updates and checking for their
consistency. The use of arbitrary functions in operations, gives full control to
the local site performing the operation.

9.2.2 What is the role of application clients in an autonom-
ous, distributed database management system?

To maintain their high level of autonomy, servers do not perform work for which
others are responsible. In practice this boils down to the clients in the system
acting as directors in query execution. This unusual role for a client is discussed
in Chapter 5. While it is intensive to perform all actions during query resolution,
agents can be of help to the client. Agents can perform simple roles, such as
following redirects and assembling a query result, if the client desires no explicit
control over that process.

The process of query resolution can become expensive when an Armada
grows large. Since clients, whether or not helped by agents, need to traverse
the tree, the bigger it becomes, the more steps are possible. In Chapter 6 this
process of localisation is further explored. To reduce the number of steps per
query, the client or agent best uses a cache of visited trails for subsequent reuse.

9.2.3 How can incremental scalability become a natural com-
ponent in an evolving system?

The operations from the Armada model described in Chapter 3 form the basis
for a system to evolve. By means of these operations it can grow or shrink
over time. This behaviour is already part of the design of the model and hence
a natural component. The operations, however, need the functions to specify
how exactly the operations need to be performed. In Chapter 4 we identified a
number of functions and described their effect both separate as well as in com-
bination with each other. In addition we looked at how functions can be chosen
automatically for the situation at hand, aiming at a naturally self-evolving sys-
tem.
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9.2.4 To what extent are existing common techniques to
manage a catalog sufficient to support autonomy, de-
centralisation and evolution?

The proposed model in this thesis breaks with traditional methods. Never-
theless we tried to simulate it using the SQL language in Chapter 7. While
querying could work on existing database systems using this SQL approach, the
autonomy considerations of the Armada model have to be ignored, since no
client redirection is possible. The remote querying facilities are also not stand-
ardised and not necessarily sufficient to perform Armada operations. The SQL
approach also falls apart with updates because of limitations of the used views.
However, while existing database systems are incapable of supporting Ar-
mada when implemented in the SQL language, it is not impossible to implement
Armada. In Chapter 8 an approach on a deeper level towards the database ker-
nel is explored. It shows that on those lower levels there is more freedom which
allows to make a sufficient implementation. If one is willing to omit user inter-
action during query resolution, the interface can even use the SQL language,
because the Armada implementation is below it, and invisible for the user.

9.2.5 How to support a continuously evolving database man-
agement system consisting of autonomous sites and a
decentralised catalog?

In the previous sections we answered the four specific research questions. Now
we are able to answer the main research question of this thesis.

Our exploration in the area of autonomous distributed database systems
has resulted in a model which describes decentralised autonomous evolution in
an environment of computers and schema-based data. The model handles the
trade-off between full replication and centralisation of the catalog, by well tar-
geted partial replication of the catalog meta information. This way, the catalog
is distributed over the entire system as part of its own evolution process.

An important aspect of the model, is its assumption of local autonomy:. It is
this autonomy that allows the local sites to initiate a next step in the evolution
of the system. But the autonomy also affects the users of the system. We have
explored the effects of this autonomy on the clients in the system, in particular
how well they can perform queries. We can conclude that it is possible to do so,
even though not with standard techniques available today.

A key to the self-evolution of the system is in the way functions, as part of
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the Armada model’s operations, are created. The functions define how the data
is distributed, and when created by local sites based on local conditions, also
form the driving power behind evolution of the system as a whole.

9.3 Future Work

With our exploration we have scratched the surface of a decentralised,
autonomous and evolving world. We did not round the Cape, but fortunately
did not ask to keep on trying until the youngest day either. Docked at the Table
Bay, we leave a lot of work left for others to pick up and continue with. The
following areas are of particular interest.

Functions The functions that back up the operations are only partially ad-
dressed in this thesis. Not only have we largely ignored the cloning and combin-
ing functions, but also the chunking functions have been marginally addressed
with only a range function implementation. Different functions have different
behaviours and they may be more beneficial under certain workloads.

In addition the conditions under which decisions for cloning and chunking
are made, are a separate topic potentially borrowing from the artificial intelli-
gence area when seen from a multi agent system angle.

User Input  One of the interesting properties of the Armada model is the close
user interaction. This allows for handling very specific user demands. We have
left this mainly untouched, but we can think of applications where this control is
beneficial. A few ideas are skipping certain boxes in query resolution, aborting
the execution, or suspending it for a long time.

Performing such interaction requires changes to existing user interfaces
though. To benefit optimally from this interaction the user needs to be provided
with many meta data over the system and the state of the query resolution pro-
cess.

MAL Architecture The approach described in Chapter 8 has been validated
against the system in question. However, the missing parts to make it a work-
ing system, still need to be implemented. The described remote module, and
the Merovingian service described in Appendix A are blocks for an actual im-
plementation, but they need to be put into action still. The most work is in
the optimiser architecture that plugs in the armada behaviour on top of an SQL
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plan, as to make it work from a user’s perspective. Of course the previously
mentioned user interaction considerations are also a possible design and imple-
mentation adventure.

Physical Allocation While we described how sites can be selected from a pool,
the way in which this pool is allocated and maintained leaves some questions.
The physical implementation of “plugging in machines” still requires some ad-
ministration, and a machine that is removed should be properly unregistered
by making sure its data is cloned to another machine.

The process of finding a new site to host a box on, is rarely a case of choos-
ing one site from a pool of homogeneously typed machines. Instead, a mix of
fast, slow, multi-way, large and small systems in terms of processing power and
data storage capacity is more likely to be in the pool. Next to these properties,
also the network link that connects the sites is an important factor in their per-
formance. These properties ask for a careful cost/revenue analysis, based on
predicted loads and functionalities. Some machines may even announce their
life time in the system, making them only useful for e.g. facilitating a burst.



MonetDB Clusters

A.1 Merovingian: MonetDB as a Service

The MonetDB software platform has traditionally always been centred around
a console based application, the mserver. Interaction via the console with the
database server is made using the kernel language, which traditionally is incom-
prehensible for normal users. This setup, where the console is always present
greatly aids developer interaction and debugging, but throws up a barrier for
normal and business users. Normally, a database server runs as daemon (server)
process in the background, responding to client requests and writing log mes-
sages to some file on disk. Stopping the daemon is done by sending it a ter-
mination signal, instead of interacting via the console to quit the server. For a
successful Armada deployment, non-interactive starting and stopping of data-
base servers is essential to keep maintenance low.

Because changing the characteristics of mserver results in a lot of resistance
by its core developers whose strong habits rely on the console based interac-
tion, a wrapper-like approach was chosen to obtain the above described desired
behaviour for the MonetDB database system. This wrapper, called Merovingian,
has next to the features of a daemon some options that make it a core compon-
ent of an Armada deployment. Merovingian here does not operate on its own,
the Sabaoth layer was added to help Merovingian on managing a local database
farm.

A.2 Merovingian's Architecture

Figure A.1 shows a cluster of two sites, equipped with Merovingian instances.
Focussing on a single site for now, a single Merovingian can manage multiple
Mservers through the Sabaoth disk-based administration. The role of Mero-



164 A.2. MEROVINGIAN'S ARCHITECTURE

Site A | Marayinaian €= == == o === = =|= = = = = > Site B

[ Sabaoth ] [ Sabaoth ] [ Sabaoth ] [ Sabaoth ]

T T T T
‘ Mserver ‘ ‘ Mserver ‘ ‘ Mserver ‘ ‘ Mserver ‘

Figure A.1: The architecture of an Armada cluster and its core components.

vingian is threefold. First, it provides daemon functionality for an Mserver.
Second, Merovingian (re)starts an Mserver once a client requires a connection
to it. Third, it handles discovery and cooperation with remote sites also us-
ing Merovingian. The first two roles go hand in hand. An Mserver started by
Merovingian, remains under its umbrella and hence can be monitored. Hence,
Mserver emitted messages can be caught and logged. Upon shutdown, Mer-
ovingian first shuts down the Mserver before it shuts down itself. The ability
of Merovingian to restart an Mserver comes in handy when an Mserver has
crashed or was shut down temporarily for maintenance.

To perform its job, Merovingian acts as a server to a connecting client. This
means that a client actually connects to Merovingian instead of an Mserver.
This is easily achieved by having Merovingian running on the default port for
an Mserver. Once a client has made a connection, it informs the server about
what database it is looking for, as usual. Merovingian looks up this database
and depending on its state it (re)starts the corresponding Mserver if necessary.
After making sure that the Mserver is running, Merovingian redirects the client
to the Mserver either using a redirect response or by creating a proxy to it. A
redirect response causes a client to disconnect and follow the directions given
by the server, a proxy causes the client to restart its login ritual. In case of a
redirect, Merovingian is not in between client and server, thereby avoiding to
become a bottleneck, but not all network setups support this due to firewall
configurations or routing issues.
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A.3 Sabaoth’s Disk Administration

When Merovingian needs to look up the state of an Mserver, it actually con-
sults Sabaoth. To achieve maximum independence and platform independent
support, Sabaoth uses the local disk to store information about the state of an
Mserver. Sabaoth is no actual process itself, instead it is a set of functions that
read from and write to the disk upon request. The actions that Sabaoth sup-
ports for storage and retrieval are numerous. It keeps track of start and stop
information and the crash information that is implicitly encoded therein. Each
database records how it can be reached, via the available connections admin-
istered, next to the available scenarios for such connection, such as e.g. the SQL
language. Lastly, Sabaoth can list all known databases in the local database
farm, including the properties of those databases.

Using all of this information provided by Sabaoth, Merovingian can find out
if a database exists or not, if it is already running or not and when both are true,
how to connect to it. The disk administration of Sabaoth is straight-forward
based on separate files, placed in the database directory of the respective data-
base.

Uplog The .uplog file consists of timestamps representing start and stop times
of the server. Sabaoth only appends to this file, hence the risk of corruption is
low. A start time is followed by a tab character, whereas a stop time is followed
by a newline character. As such, the .uplog file looks like a two column data
sheet on a database that has no crashes. As soon as a database crashes, no stop
time is written to the log, and hence the next start of the server follows the
previous start time. For both the human eye and a program it is easy to see a
crash has occured in such case.

Connections All sockets that are opened by a server to listen for connections,
are registered by Sabaoth in the . conns file. It contains one or more URLSs that
point to the database, e.g. mapi :monetdb://localhost:50001/, which can dir-
ectly be used to connect or redirect to that database. Since an Mserver calls the
respective Sabaoth function to register an available connection only when it has
successfully completed opening that connection, Merovingian can reliably redir-
ect a client to a just started database once the Mserver has registered available
connections through Sabaoth.
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Scenarios A scenario is a specific language mode that can be used to commu-
nicate to the server. Each Mserver can have a different set of scenarios loaded
and hence available. The .scens file contains all scenarios available, one scen-
ario per line. Typically, the file contains sql and mal entries, for availability of
the SQL language front-end and the MAL kernel language console.

A.4 Remote Databases with Merovingian

Merovingian is considered to be the entry point for clients to the MonetDB
Database Server on a particular system. As such, in distributed scenarios Mer-
ovingian can be used to represent the “global” knowledge that is necessary to
find another database in the environment. How Merovingian does this, is in
principle unrelated to the fact that it does. In other words, a client comes to
Merovingian, assuming it gets an appropriate redirect or error when the data-
base does not exist. The implementation used in Merovingian to know about
foreign databases should just satisfy the assumption of the client. Currently
Merovingian uses a simple broadcast based implementation. Future versions
might use a DHT based approach if the broadcast approach is proven not to
be sufficient. To redirect a client to a foreign database, Merovingian needs a
Sabaoth like structure containing at least the database name and its connection
URL. Since most tools relying on Sabaoth assume it only administers local data-
bases, appending the remote database structures to it results in conflicts. This is
best illustrated by the properties of such remote database. The properties avail-
able in Sabaoth about databases need not to be available for a foreign database.
Retrieving the information may be expensive. For these reasons, the informa-
tion only makes sense for Merovingian. Each Merovingian publishes inform-
ation about its databases either push or pull based to others with a modified
connection URL. Instead of associating the local connection URL to a published
database, the connection URL of the Merovingian publishing it is used. This
scheme allows the foreign Merovingian to start a requested database on the fly
when necessary, as normal.

Broadcasts In the broadcast implementation of Merovingian, each starting
Merovingian broadcasts a list of available databases using ANNC “announce”
messages. Other Merovingian processes that receive those messages append
these databases to their local administration of remote databases. Next, a start-
ing Merovingian sends a HELO “hello” message which other Merovingian pro-
cesses respond to by announcing their available databases. This way, a join-
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ing Merovingian publishes its existence and an exchange of available databases
throughout the network is performed.

The broadcast can be limited to a certain subnet, as to reach only a selective
audience, or IPv6’s advanced multicasting features can be used to control the
reach of broadcast messages. For simplicity all communication is done using
connection-less UDP packages, which allow broadcasting and are very cheap.
Loss of messages does in principle not harm the system as a whole. Considering
in most cases the cluster runs over a local network, it is unlikely packages get
lost at all.

Time-To-Live New databases can be added, or others removed. Merovingian
itself does not notice this until a client asks for such database. Hence the only
way of finding new databases, is by periodically consulting Sabaoth to retrieve
the current list of available databases. This way it is easy to detect a new data-
base, but hard to detect a removed database. For this a list of the previous con-
sult has to be kept. An alternative solution using a time-to-live is used by Mer-
ovingian. Each announcement of a database gets a time-to-live (TTL) from the
announcing Merovingian. Each Merovingian that receives this announcement
stores the TTL, and frequently checks all known remote databases whether their
TTL has expired. If so, the remote database is dropped. To prevent a remote
database from being dropped, its originating Merovingian has to “renew” the
TTL, which is done by a re-announcement of the same database, but with an
updated TTL. Each Merovingian periodically announces its local databases this
way, a little earlier than the TTL expiration time. This way it is avoided that a
database becomes unavailable for a short period around TTL expiration. Local
databases that are removed, are not re-announced this way, and hence due to
the TTL expiring they are also removed from remote Merovingian processes, be
it with a delay. The same delay is encountered for new databases to become
available at remote sites. However, it is not common that databases are added
or removed. For environments there this is the case for some reason, the TTL
time can be set relatively low to increase the responsiveness here.

With each Merovingian periodically re-announcing, the cycle in which this
is done is based on the TTL time and the startup time of the Merovingian. This
is important for the load on the network, since broadcasting is used. If all Mer-
ovingian processes would re-announce at the same time, a flood of messages
would occur and package loss or even worse a Denial of Service (DoS) happen.
While this seems unlikely to happen, the HELO message could synchronise all
Merovingian processes when they would reset their TTL when announcing in



168 A.5. INTEROPERABILITY

response of the hello. Hence, the announce messages in response to a hello
message are followed by a re-announce within the TTL expiration time, just to
avoid repetitive mass announcements. To avoid the same effect as response to
the hello message, each Merovingian takes a random delay before sending the
announcement.

Finally, when a Merovingian is shut down, it sents a LEAV message for each
local database. This is a little “service” to speed up the process of removal
of remote databases when they are no longer valid. Of course when this step
would be skipped, a TTL expiration would clean up eventually.

A.5 Interoperability

Even though this is a very simple way of publishing availability of data sources,
it does allow for processes other than Merovingian to publish its own existence.
In a Merovingian only environment, all participators administer foreign data-
bases. This symmetry is however, not a requirement, and as such a compatible
process (such as an old version of Mserver) that is not compatible with Sabaoth
could publish itself to Merovingian with a minimum effort. In reality this is an
issue where MonetDB v4 has support for XQuery, unavailable in MonetDB v5.
The former, however, cannot be managed by Merovingian which is designed for
the latter. By changing the MonetDB v4 server slightly to publish itself using
the simple message mentioned upon a broadcast of a Merovingian, its XQuery
facilities can be made available through Merovingian, without its explicit con-
trol over it. This doesn’t provide the support of Merovingian for MonetDB v4 of
course, but it helps to make it available during the transition period. Another
example would be specialised “routers” that connect Merovingians on two dif-
ferent configurations (ports) to each other by implementing a cross. Since full
URLs are stored, the eventual client connection is not bothered by the configur-
ation difference.

A.6  Merovingian and Armada

The database names published, are used as is by Merovingian, e.g. when the
connection url for a foreign database is mapi:monetdb://myhost/ and its pub-
lished database mydb, then the redirection url that Merovingian uses for this
database is mapi:monetdb://myhost/mydb. Internally to Merovingian, how-
ever, the foreign database is known as mydb, exactly like as it was published.
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This scheme is likely to result in conflicts; it is not hard to imagine two or more
Merovingians to have the same database name in a default setting. For each
Merovingian, however, the Sabaoth administration is consulted before any for-
eign published databases are searched. Duplicate database names in the foreign
adminstration of a Merovingian are simply stored, but the first found entry is
used. Since this most likely depends on the order in which foreign Merovingians
published their databases, this may differ per Merovingian and even per run.
The alternative of making each database name unique results in those databases
not being able to be found under their original name any more. For this reason,
the uniqueness of database names is left to the actual users of the cluster of
Merovingians. In an Armada setting this is not an issue at all. Databases are
made as part of the initialisation ritual of a certain node. For that purpose it
is more than useful to create a database that has a unique name in the cluster
by e.g. combining the node name and its local sequence number. The “service
discovery” functionalities of Merovingian are for this case sufficient.






(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Bibliography

E. H. L. Aarts et al., editors. First European Symposium on Ambient Intelli-
gence (EUSAI), volume 2875 of LNCS, 2003.

D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In
CIDR, 2005.

S. Agrawal et al. Database tuning advisor for microsoft sql server 2005.
In VLDB, 2004.

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R.
Putzoluy, I. L. Traiger, B. W. Wade, and V. Watson. System R: relational
approach to database management. ACM Trans. Database Syst., 1(2):97-
137, 1976.

H. Balakrishnan et al. Retrospective on aurora. VLDB Journal, 13(4),
2004.

P. Bernstein. Applying model management to classical meta data prob-
lems, 2003.

P. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications. PhD thesis, UVA, 2002.

P. A. Boncz and C. Treijtel. AmbientDB: relational query processing in a
P2P network. In International Workshop on Databases, Information Sys-
tems, and P2P Computing (DBISP2P) (co-located with VLDB 2003), volume
2788 of Lecture Notes in Computer Science/Lecture Notes in Artificial Intelli-
gence (LNCS/LNAI), (© Springer-Verlag, Berlin, Germany, September 2003.
Also available as CWI Technical Report INS-R0306.

C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Ad-
aptive database caching with dbcache. IEEE Data Eng. Bull., 27(2):11-18,
2004.

I. T. Bowman, P. Bumbulis, D. Farrar, A. K. Goel, B. Lucier, A. Nica, G. N.
Paulley, J. Smirnios, and M. Young-Lai. Sql anywhere: An embeddable
dbms. IEEE Data Eng. Bull., 30(3):29-36, 2007.

N. Bruno and S. Chaudhuri. An online approach to physical design tuning.
In ICDE, pages 826-835, 2007.



172

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Ceri and G. Pelagatti. Distributed databases principles and systems.
McGraw-Hill, Inc., New York, NY, USA, 1984.

S. Chaudhuri and V. Narasayya. AutoAdmin “what-if” index analysis util-
ity. pages 367-378, 1998.

S. S. Chawathe. Managing change in heterogeneous autonomous databases.
PhD thesis, Stanford, CA, USA, 1999. Adviser-Hector Garcia-Molina.

J. Chen, G. Soundararajan, M. Mihailescu, and C. Amza. Outlier detection
for fine-grained load balancing in database clusters. In ICDE Workshops,
pages 404-413, 2007.

E. F. Codd. A relational model of data for large shared data banks. Com-
mun. ACM, 13(6):377-387, 1970.

B. Cook, S. Babu, G. Candea, and S. Duan. Toward self-healing multitier
services. In ICDE Workshops, pages 424-432, 2007.

D. DeWitt and J. Gray. Parallel Database Systems: The Future of High
Performance Database Systems. Communications of the ACM, 35(6), 1992.

K. Douglas and S. Douglas. PostgreSQL, Second Edition. Sams, 2005.

M. H. Dunham et al. A mobile transaction model that captures both the
data and movement behavior. Mobile Networks and Applications, 2(2),
1997.

M. J. Franklin et al. Design considerations for high fan-in systems: The
hifi approach. In CIDR, 2005.

S. Gancarski, H. Naacke, E. Pacitti, and P. Valduriez. Parallel processing
with autonomous databases in a cluster system, 2002.

H. Garcia-Molina and D. Barbard. How to assign votes in a distributed
system. J. ACM, 32(4):841-860, 1985.

G. Gardarin. Iro-db : A distributed system federating object and relational
databases, 1995.

D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th
ACM Symposium on Operating Systems Principles (SOSP), pages 150-162,
1979.



BIBLIOGRAPHY 173

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consist-
ent available partition-tolerant web services.

G. Graefe. Encapsulation of parallelism in the volcano query processing
system. SIGMOD Rec., 19(2):102-111, 1990.

J. Gray. An approach to decentralized computer systems. Software Engin-
eering, 12(6):684-692, 1986.

S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu. What Can
Peer-to-Peer Do For Databases, and Vice Versa? In WebDB, Santa Barbara,
CA, USA, 2001.

F. Groffen, M. L. Kersten, and S. Manegold. Armada: a Reference Model
for an Evolving Database System. In Proceedings of Datenbanksysteme in
Business, Technologie und Web, Aachen, Germany, Mar. 2007.

F. Groffen, M. L. Kersten, and S. Manegold. Optimising Client Accesses
within Armada. In Third Workshop on Dependable Distributed Data Man-
agement, Nuremberg, Germany, Mar. 2009.

L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L.
Wimmers. Transforming heterogeneous data with database middleware:
Beyond integration. IEEE Data Engineering Bulletin, 22(1):31-36, 1999.

L. M. Haas, P. G. Selinger, E. Bertino, D. Daniels, B. G. Lindsay, G. M.
Lohman, Y. Masunaga, C. Mohan, P. Ng, P. F. Wilms, and R. A. Yost. R*: A
research project on distributed relational dbms. IEEE Database Eng. Bull.,
5(4):28-32, 1982.

D. Heimbigner and D. McLeod. A federated architecture for information
management. ACM Trans. Inf. Syst., 3(3):253-278, 1985.

M. Holze and N. Ritter. Towards workload shift detection and prediction
for autonomic databases. In PIKM ’07: Proceedings of the ACM first Ph.D.
workshop in CIKM, pages 109-116, New York, NY, USA, 2007. ACM.

S. E. Hudson and R. King. Cactis: a self-adaptive, concurrent implement-
ation of an object-oriented database management system. ACM Trans.
Database Syst., 14(3):291-321, 1989.

R. Huebsch et al. The Architecture of PIER: an Internet-Scale Query Pro-
cessor. In CIDR, 2005.



174

BIBLIOGRAPHY

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: a balanced tree structure
for peer-to-peer networks. In VLDB ’05: Proceedings of the 31st interna-
tional conference on Very large data bases, pages 661-672. VLDB Endow-
ment, 2005.

JBoss-Inc. Hibernate. http://www.hibernate.org/, 2007.

P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive
peer-to-peer network for distributed caching of OLAP results. In SIGMOD
Conference, 2002.

J. S. Karlsson. Scalable Distributed Data Structures for Database Man-
agement. Ph.D. Thesis, Univ. Amsterdam, Amsterdam, The Netherlands,
December 2000.

J. S. Karlsson and M. L. Kersten. Omega-storage: A Self Organizing Muli-
attribute Storage Technique for Large Main Memories. In Australasian
Database Conference, 2000.

R. King, M. Novak, C. Och, and F. Velez. Sybil: Supporting heterogeneous
database interoperability with lightweight alliance. In Next Generation
Information Technologies and Systems, pages 0—, 1997.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, 1978.

W. Litwin et al. Lh*rs: A highly available distributed data storage. In
VLDB, 2004.

L. F. Mackert and G. M. Lohman. R* optimizer validation and performance
evaluation for distributed queries. In VLDB, pages 149-159, 1986.

R. MacNicol and B. French. Sybase iq multiplex - designed for analytics.
In VLDB, pages 1227-1230, 2004.

S. Madden et al. Tinydb: an acquisitional query processing system for
sensor networks. ACM TODS, 30(1), 2005.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design
of an acquisitional query processor for sensor networks. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, pages 491-502, New York, NY, USA, 2003. ACM.



BIBLIOGRAPHY 175

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

F. Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms: proceedings of the International Workshop on
Parallel and Distributed Algorithms.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. In International Workshop on Peer-to-
Peer Systems, 2002.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. In International Workshop on Peer-to-
Peer Systems, 2002.

M. Mehta and D. J. DeWitt. Data placement in shared-nothing paral-
lel database systems. VLDB Journal: Very Large Data Bases, 6(1):53-72,
1997.

C. Mohan and I. Narang. Algorithms for creating indexes for very large
tables without quiescing updates. SIGMOD Rec., 21(2):361-370, 1992.

W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system
for distributed data sharing. In ICDE, pages 633-644, 2003.

Y. Petrakis et al. On Using Histograms as Routing Indexes in Peer-to-Peer
Systems. In DBISP2P, 2004.

J. Rao et al. Automating Physical Database Design in a Parallel Database.
In SIGMOD, 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scal-
able content-addressable network. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 161-172, New York, NY, USA, 2001.
ACM.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale p2p systems. In Proc. IFIP/ACM Middleware,
2001.

B. Schwartz, P. Zaitsev, V. Tkachenko, J. Zawodny, A. Lentz, and D. J.
Balling. High Performance MySQL, 2nd Edition. O’Reilly, 2008.



176

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. GlobeDB:
Autonomic data replication for web applications. In Proc. of the 14th In-
ternational World-Wide Web Conference, pages 33-42, Chiba, Japan, may
2005.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In ACM SIGCOMM, 2001.

M. Stonebraker. The Case for Shared Nothing Architecture. Database
Engineering, 9(1), 1986.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’'Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented dbms. In VLDB “05: Proceedings of
the 31st international conference on Very large data bases, pages 553-564.
VLDB Endowment, 2005.

M. Stonebraker et al. Mariposa: A New Architecture for Distributed Data.
In IEEE 10th International Conference on Data Engineering, 1994.

M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and imple-
mentation of INGRES. ACM Trans. Database Syst., 1(3):189-222, 1976.

A.J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Surendra.
Adaptive self-tuning memory in db2. In VLDB "06: Proceedings of the 32nd
international conference on Very large data bases, pages 1081-1092. VLDB
Endowment, 2006.

M. Tamer Ozsu and P. Valduriez. Principles of distributed database systems.
Prentice Hall, 1999.

R. H. Thomas. A majority consensus approach to concurrency control for
multiple copy databases. ACM Trans. Database Syst., 4(2):180-209, 1979.

M. van Steen. Towards very large, self-managing distributed systems:
Extended abstract. In OPODIS, pages 3-6, 2003.

J. Veijalainen and R. Popescu-Zeletin. Map: an open multidatabase system
architecture. In EW 3: Proceedings of the 3rd workshop on ACM SIGOPS
European workshop, pages 1-4, New York, NY, USA, 1988. ACM.



BIBLIOGRAPHY 177

[72] W. Vogels. Data Access Patterns in The Amazon.com Technology Platform,
Keynote Speech VLDB, 2007.

[73] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons
Ltd, 2002.

[74] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Segment Tree: Sup-

port Range Query and Cover Query over DHT. In 5th IPTPS Workshop,
2006.

[75] D. C. Zilio et al. DB2 Design Advisor: Integrated Automatic Physical Data-
base Design. In VLDB, 2004.






Summary

In a world where data usage becomes more and more widespread, single system
solutions are no longer adequate to meet the data requirements of today. No
longer one monolithic system, but instead a group of smaller and cheaper ones
have to manage the workload of the system, preferably as stable as the large
single systems currently in use.

The ultimate goal is to have a self-managing and self-maintaining cluster of
machines that just needs maintenance in terms of physically adding and remov-
ing hardware every once in a while, to cope with changed requirements. Close
to this objective are Peer-to-Peer (P2P) systems, which are well-known on the in-
ternet, and quite effective in distributing data over the network. However, these
systems typically distribute only certain data over the network as side-effect of
certain user demands.

This thesis explores the landscape of self-managing database systems. It
takes autonomy, decentralisation and evolution as starting point for this explor-
ation. Autonomy of an individual system allows how much a system is able
to control itself, and make decisions for itself that put it in a better position,
for instance by temporarily refusing to do work for others. This self-regulation
allows for evolution of the entire system, where individual components work
towards a new structure of the system that better matches the current require-
ments. Such approach leads to decentralisation, as there is no hierarchy since
all systems are autonomous.

At the heart of this thesis is the Armada model which describes a method to
distribute relational data, as found in typical database systems, over a cluster of
machines. The model takes autonomy, decentralisation and evolution as start-
ing points, resulting in a distributed administration. Since the administration is
not managed in a single location, this way local systems can use their autonomy
and change the administration for the part they are responsible for. Each system
can do this without harming any of the other systems, thereby supporting evol-
ution. Because this gives each system a large degree of freedom, they can even
choose how to perform for example a split of the data, using the right methods
to reach the required goal, if they deem this necessary.

A consequence of having autonomous systems in a cluster is that users of the
system have to face systems that refuse to do work on their behalf. This trans-
lates into an active client model, where clients are responsible for the execution
of their own queries. This can be intensive and unfriendly for a human user.
Fortunately it is possible to automate a lot of necessary work in an agent that
works on behalf of the user, by communicating to the systems. However, this
comes at the price that this way agents remove the possibility for the user to
influence the execution process, such as stopping the execution after a review
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of intermediate results.

Agents that work on behalf of a user, looking for data in an Armada tree,
need to hop around the cluster from system to system. The more hops an
agent makes, the longer it takes, and hence the lower the performance of query
execution. It is beneficial if the agent can reduce the number of steps it has to
make, which it can do by caching information on the whereabouts of data it
encounters when searching. The next time the agent needs to handle a query,
it can then first consider its cache to see if it can directly go to the right site,
or one nearby. In practice this allows an agent to quickly reduce the number of
hops it has to make per query.

It is possible to map the Armada model to SQL, using views. This way, each
individual data block can be represented by a view, that points to the right
table, or when no longer existing, the replacement tables. This way an ordinary
query can become a query over a large amount of tables through these views.
While this works fine for expansion of the database, as well as querying the
data within it, updating or inserting data is a problem, since the current SQL
implementations do not, or not sufficiently, support updates on views, which in
the Armada case can be complicated. Hence this approach turns out to be of
limited use.

To solve the above problem, an Armada implementation deeper into the
database system is necessary, such as at the MAL level of the MonetDB data-
base. On this level, which is directly on top of the core engine, there are many
degrees of freedom that allow to do more complex operations and optimisa-
tions. On this MAL level, an Armada system that supports reads and writes can
be implemented.



Samenvatting

Sla een willekeurig automatisering blaadje open, en de hedendaagse kreten
die “de trend” heten komen u tegemoet. Waar eens de GRID technologie het
helemaal was, wordt u nu een SOA toegewenst. Of zo’n Service Oriented Archi-
tecture nu echt het einde of een aandoening is, het blijft onvermijdelijk om te
concluderen dat grote, eenzame mainframes uit de mode zijn.

Niet langer één groot en zwaar systeem, maar in plaats daarvan een of meer-
dere clusters van kleinere en vooral goedkopere machines die samen de klus
moeten klaren. Ook database systemen moeten eraan geloven, om overweg
te kunnen met een cluster van machines, terwijl ze ook nog fatsoenlijk en be-
trouwbaar werk blijven leveren.

Is het niet de droom van elke computerfreak om een een cluster van compu-
tersystemen te hebben dat zichzelf onderhoudt? Een cluster waar enkel nieuwe
hardware in hoeft te worden geschoven, om aan de nieuwe opslag- en verwer-
kingshonger te kunnen voldoen? Zo'n systeem is nu nog een utopie voor de
database wereld, maar er zijn al stappen in die richting gezet. Het meest in het
oog springend zijn de zogenaamde Peer-to-Peer (P2P) systemen. Deze internet
brede systemen zijn afgezien van hun populariteit in de media in staat om data
te verspreiden en lokaliseren zonder een centraal besturend medium. Maar in
hoeverre doet het systeem dit nu eigenlijk zelf? Doorgaans is dit slechts een
neveneffect van een bepaalde behoefte van mensen.

Dit proefschrift is een verkenningstocht in de richting van een zelf gedreven
systeem. Onder de vlag van Armada, zijn autonomie, decentralisatie en evolu-
tie als een combinatie onderzocht. De mate van autonomie van een computer
systeem bepaald in grote mate in hoeverre het systeem zichzelf kan onderhou-
den. Een autonoom systeem kan zelf beslissingen nemen over zijn toestand, en
bijvoorbeeld werk van anderen weigeren. Wil een systeem zelf evolueren naar
een beter aangepast systeem, dan zullen de systemen waaruit het bestaat hun
verantwoordelijkheid moeten nemen. Die insteek leidt vanzelf tot decentralisa-
tie, waarbij geen machtshiérarchie bestaat aangezien elk subsysteem zijn eigen
autonomie waarborgt.

Het Armada model, dat aan de basis van dit proefschrift staat, beschrijft
een methode om data, zoals die typisch in een database gevonden wordt, over
een cluster te distribueren. Het model speelt in op de behoefte aan autonomie,
decentralisatie en evolutie door de feitelijke distributie administratie ook gedis-
tribueerd op te slaan. Juist daardoor kunnen lokale systemen hun autonomie
gebruiken om een een bepaalde operatie uit te voeren — meestal ter uitbreiding
van het systeem. Immers, omdat de administratie gedistribueerd is, en wel pre-
cies naar de plaatsen waar ook de feitelijke data zich bevind, kan een systeem
geheel onafhankelijk een operatie uitvoeren, zonder daarbij het totale systeem
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(deels) onbruikbaar te maken voor anderen. De vrije keuze van bijvoorbeeld
een opsplitsfunctie stelt het betreffende systeem nog meer instaat zijn autono-
mie te beoefenen en een functie te kiezen met de eigenschappen die precies
passen bij het beoogde doel.

Door de autonomie van de systemen in het cluster, ontstaat er een situatie
waarin gebruikers worden geacht zelf actief met hun verzoeken bezig te zijn.
De systemen zullen geen werk doen wat zij niet strikt hoeven te doen, met alle
gevolgen van dien voor de gebruikers. Omdat dit overwegend simpel, maar
behoorlijk intensief kan zijn is het mogelijk om zogenaamde agenten te gebrui-
ken die als tussenlaag tussen de feitelijke gebruiker en het systeem zit. Dit
is uiteraard prettig voor de gebruiker, maar sluit een mogelijkheid uit waarin
de gebruiker de uitvoering van zijn verzoek wil beinvloeden, zoals voortijdig
afbreken na beschouwing van tussentijdse resultaten.

Een agent die in een cluster opzoek is naar de juiste data moet stappen
maken. Des te meer stappen er gemaakt worden, des te lager de uiteindelijke
prestaties. Elke stap betekend een verbinding met een ander systeem uit het
cluster, en het maken van zo'n verbinding is duur. Het daarom belangrijk dat
de agent voorgaande stappen niet direct vergeet, maar tot een bepaald punt
onthoudt. Hiermee kan in de praktijk grotendeels stappen vermeden worden,
omdat direct teruggevallen kan worden op de onthouden stappen. Uiteraard
komt dit de uiteindelijke prestatie ten goede.

Om het Armada model af te beelden op de reguliere SQL taal, kunnen de
views uit deze taal gebruikt worden om de verschillende data blokken te repre-
senteren. Op die manier ontstaat een aaneenschakeling van tabellen via views.
Deze aanpak werkt in principe voor het reconstrueren van de data, maar toont
gebreken wanneer data toegevoegd, of gewijzigd moet worden. Met name het
niet kunnen bijwerken van data door een view gerepresenteerd maakt de aan-
pak ongeschikt.

Een manier om hiervoor genoemde problemen op te lossen is door op een
dieper niveau in een database systeem het Armada model toe te passen, zoals
bijvoorbeeld het MAL niveau in de MonetDB database. Dit niveau speelt op het
niveau van de database kern, net boven de eigenlijke programma code. Op dit
niveau zijn vele vrijheidsgraden die wijzigingen en toevoegingen op of aan de
data mogelijk maken. Ook is het hier mogelijk om optimalisaties door te voeren
door betere kennis over de uitgevoerde plannen.
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